Report No.: TSZ23080400-P01-R01 Page 1 of 3 # Test Report | | | 2 19114 | | | |---------|--------|---------|--|--| | Client | : | | | | | Address | : | | | | | | 37.00% | | | | # The following sample(s) and sample information was/were submitted and identified by/on the behalf of the client | Sample Name | : | Lithium-ion battery | | **** 7 | | |----------------|-----|---------------------------|--------|--------|-----| | Model/P.O. No. | : | Refer to the attachment | a Tian | | | | Manufacturer | 3 | - | | 天淵 | | | Received Date | : | Jul 02, 2025 | 天湖 | | 4 1 | | Test Period | 284 | Jul 02, 2025~Jul 29, 2025 | | e M | | | Test Requested | 5. | Regulation (EU) 2023/1542 | | | | | Co | onclusion | 主 渊 | 7ian Su | | 天 M
71.111 54 | | |----|------------------------------------|-----|---------|---------------|------------------|---| | - | Lead(Pb), Cadmium(Cd), Mercury(Hg) | | | 夫爾
Tian Su | PASS | S | For Further Details, Please Refer To the Following Page(s) Approved by: **Date:** Jul 29, 2025 Add: Building 1/4, No.2, Jinlong Road, Longgang District, Shenzhen, Guangdong, China. Tel: 0755-89457984 E-mail: tsjc@tiansu.org Post Code: 518116 Website: www.tiansu.org Report No. : TSZ23080400-P01-R01 Page 2 of 3 #### **Test Methods** | 7100 | Test Items | Test Method | Equipment | |------|-----------------------|----------------------------|-----------| | | Lead(Pb), Cadmium(Cd) | IEC 62321-5:2013 | ICP-OES | | | Mercury(Hg) | IEC 62321-4:2013+AMD1:2017 | ICP-OES | ## **Test Results** | Test components | Test Item(s) | MDL (%) | Result(s) (%) | Limit (%) | | |---------------------|--------------|---------|---------------|-----------|--| | A Tian Su | Lead(Pb) | 0.0005 | N.D. | 0.0100 | | | Lithium-ion battery | Cadmium(Cd) | 0.0005 | N.D. | 0.0020 | | | 天潮 " | Mercury(Hg) | 0.0001 | N.D. | 0.0005 | | ### Note: - N.D.=Not Detected (<MDL); MDL=method detection limit. - According to regulation (EU) 2023/1542, All batteries containing more than 0.002 % cadmium or more than 0.004 % lead, shall be marked with the chemical symbol for the metal concerned: Cd or Pb. - The relevant chemical symbol indicating the heavy metal content shall be printed beneath the separate collection symbol and shall cover an area of at least one-quarter the size of that symbol. #### **Test Process:** Test Lead(Pb) ,Cadmium(Cd) , Mercury(Hg) concentration: Sample preparation, weigh Add the digesting reagent Total digested by microwave Tested by ICP-OES Dilute with DI water Filter and transfer to volumetric flask Report No.: TSZ23080400-P01-R01 Page 3 of 3 # Photo of the sample ## **Attachment:** | INR18650-2000mAh | INR18650-1500mAh | INR18650-2500mAh | INR21700-3000mAh | |------------------|------------------|------------------|------------------| | INR18650-800mAh | INR18650-1600mAh | INR18650-2600mAh | INR21700-3500mAh | | INR18650-900mAh | INR18650-1700mAh | INR18650-2800mAh | INR21700-3800mAh | | INR18650-1000mAh | INR18650-1800mAh | INR18650-3000mAh | INR21700-4000mAh | | INR18650-1100mAh | INR18650-2100mAh | INR18650-3100mAh | INR21700-4500mAh | | INR18650-1200mAh | INR18650-2200mAh | INR18650-3200mAh | INR21700-4800mAh | | INR18650-1300mAh | INR18650-2400mAh | INR21700-2500mAh | INR21700-5000mAh | ************ End of report ********** This report is invalid without the Special Seal of Tiansu. This report shall not be altered, increased or deleted. The results shown in this report refer only to the sample(s) tested. # TEST REPORT IEC 62133-2 Secondary cells and batteries containing alkaline or other non-acid electrolytes – Safety requirements for portable sealed secondary cells, and for batteries made from them, for use in portable applications – Part 2: Lithium systems Report Number.....: 6168705.50 Date of issue....: 2025-07-29 (Correction 1 at 2023-09-07) (Correction 2 at 2024-07-21) Total number of pages: 39 pages Name of Testing Laboratory preparing the Report DEKRA Testing and Certification (Shanghai) Ltd. Applicant's name: Address....:: Test specification: Standard: IEC 62133-2:2017, IEC 62133-2:2017/AMD1:2021 Test procedure: CB Scheme Non-standard test method: N/A TRF template used.....: IECEE OD-2020-F1:2021, Ed.1.4 Test Report Form No.: IEC62133_2C Test Report Form(s) Originator: DEKRA Certification B.V. Master TRF: Dated 2022-07-01 Copyright © 2022 IEC System of Conformity Assessment Schemes for Electrotechnical Equipment and Components (IECEE System). All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the IECEE is acknowledged as copyright owner and source of the material. IECEE takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. If this Test Report Form is used by non-IECEE members, the IECEE/IEC logo and the reference to the CB Scheme procedure shall be removed. This report is not valid as a CB Test Report unless signed by an approved IECEE Testing Laboratory and appended to a CB Test Certificate issued by an NCB in accordance with IECEE 02. #### General disclaimer: The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Issuing NCB. The authenticity of this Test Report and its contents can be verified by contacting the NCB, responsible for this Test Report. | Test item description:: | Recha | rgeable Li-ion cell | | | | | |---------------------------------------|--|-------------------------|-----------------------------|--|--|--| | Trade Mark(s): | N/A | | | | | | | Manufacturer: | | | | | | | | | | | | | | | | Model/Type reference:: | INR21700-2500mAh, INR21700-3000mAh, INR21700-3500mAh, INR21700-3800mAh, INR21700-4000mAh, INR21700-4500mAh, INR21700-4800mAh, INR21700-5000mAh | | | | | | | Ratings:: | Nominal Voltage: 3,7 V
INR21700-2500mAh: Rated Capacity: 2500 mAh/ 9,25 Wh | | | | | | | | | | pacity: 3000 mAh/ 11,10 Wh | | | | | | INR21 | 700-3500mAh: Rated Ca | apacity: 3500 mAh/ 12,95 Wh | | | | | | INR21 | 700-4000mAh: Rated Ca | apacity: 4000 mAh/ 14,80 Wh | | | | | | INR21 | 700-5000mAh: Rated Ca | apacity: 5000 mAh/ 18,50 Wh | | | | | | INR21 | 700-3800mAh: Rated Ca | pacity: 3800 mAh/ 14,06 Wh | | | | | | INR21 | 700-4500mAh: Rated Ca | pacity: 4500 mAh/ 16,65 Wh | | | | | | INR21700-4800mAh: Rated Capacity: 4800 mAh/ 17,76 Wh | | | | | | | | | | | | | | | Responsible Testing Laboratory (as a | applicat | ole), testing procedure | and testing location(s): | | | | | | DEKRA Testing and Certification (Shanghai) Ltd. | | | | | | | Testing location/ address | 3F, #250 Jiangchangsan Road, Building 16, Headquarter Economy Park Shibei Hi-Tech Park, Jing'an District, Shanghai, 200436, China | | | | | | | Tested by (name, function, signature) |): | Sunny Qi,
Engineer | Siver | | | | | Approved by (name, function, signate | ure): | Alan Yang,
Reviewer | Alan Yang | | | | | ☐ Testing procedure: CTF Stage 1 | : | | | | | | | Testing location/ address | : | | | | | | | Tested by (name, function, signature) |): | | | | | | | Approved by (name, function, signatu | ure): | | | | | | | | | | | | | | | Testing procedure: CTF Stage 2 | | | | | | | | Testing location/ address | | | | | | | | Tested by (name + signature) | | | | | | | | Witnessed by (name, function, signat | | | | | | | | Approved by (name, function, signatu | ure): | | | | | | | ☐ Testing procedure: CTF Stage 3 | : | | | | | | Page 3 of 39 Report No. 6168705.50 | | Testing procedure: CTF Stage 4: | | |------|--|--| | Test | ing location/ address: | | | Test | ed by (name, function, signature): | | | Witr | essed by (name, function, signature) .: | | | App | roved by (name, function, signature): | | | Sup | ervised by (name, function, signature) : | | | | | | ## List of Attachments (including a total number of pages in each attachment): - -Attachment 1: National differences (3 pages) - -Attachment 2: Photo documentation (3 page). ## Summary of testing: # Tests performed (name of test and test clause): All applicable tests were performed on Cell INR21700-2500mAh, INR21700-3000mAh, INR21700-4000mAh and INR21700-5000mAh. - cl.5.6.2 Design recommendation; - cl.7.1 Charging procedure for test purposes; - cl.7.2.1 Continuous charging at constant voltage (cells); - cl.7.3.1 External short circuit (cells); - cl.7.3.3 Free fall; - cl.7.3.4 Thermal abuse (cells); - cl.7.3.5 Crush (cells); - cl.7.3.7 Forced discharge (cells); - cl.7.3.9 Design evaluation Forced internal short circuit (cells) Tests are made with the number of cells specified in IEC 62133-2: 2017+A1 Table 1. ## **Testing location:** DEKRA Testing and Certification (Shanghai) Ltd. 3F, #250 Jiangchangsan Road, Building 16, Headquarter Economy Park Shibei Hi-Tech Park, Jing'an District, Shanghai, 200436, China ## Summary of compliance with National Differences (List of countries addressed): KR KR= Republic of Korea ☐ The product fulfils the requirements of KC 62133-2:2020. | Use of uncertainty of measurement for decisions on conformity (decision rule) : | |---| | No decision rule is specified by the IEC standard, when comparing the measurement result with the applicable limit according to the specification in that standard. The decisions on conformity are made without applying the measurement uncertainty ("simple acceptance" decision rule, previously known as
"accuracy method"). | | Other: (to be specified, for example when required by the standard or client, or if national accreditation requirements apply) | | Information on uncertainty of measurement: The uncertainties of measurement are calculated by the laboratory based on application of criteria given by OD-5014 for test equipment and application of test methods, decision sheets and operational procedures of IECEE. | | IEC Guide 115 provides guidance on the application of measurement uncertainty principles and applying the decision rule when reporting test results within IECEE scheme, noting that the reporting of the measurement uncertainty for measurements is not necessary unless required by the test standard or customer. | Calculations leading to the reported values are on file with the NCB and testing laboratory that conducted the testing. ### Copy of marking plate: The artwork below may be only a draft. The use of certification marks on a product must be authorized by the respective NCBs that own these marks. ## Remark: As the cell volume is too small, the following information is reflected in the cell packaging and specifications. - 1. The cell designation is INR21700. - 2. The manufacturer is - 3. The warning is "Do nor disassemble, puncture, crush, heat or burn". | Test item particulars | Rechargeable Li-ion cell | |---|--| | Classification of installation and use: | N/A | | Supply Connection | DC connector | | Recommend charging method declared by the manufacturer | Charging the cell with INR21700-2500mAh: 1250mA, INR21700-3000mAh: 1500mA, INR21700-3500mAh: 1750mA, INR21700-4000mAh: 2000mA, INR21700-5000mAh: 2500mA constant current and 4,2 Vdc constant voltage until the current reduces to INR21700-2500mAh: 125mA, INR21700-3000mAh: 150mA, INR21700-3500mAh: 175mA, INR21700-4000mAh: 200mA, INR21700-5000mAh: 250mA at ambient 20 °C±5 °C | | Discharge current (0,2 It A) | INR21700-2500mAh: 500mA, INR21700-3000mAh: 600mA, INR21700-3500mAh: 700mA, INR21700-4000mAh: 800mA, INR21700-5000mAh: 1000mA | | Specified final voltage | 2,75 Vdc | | Upper limit charging voltage per cell | 4,2 Vdc | | Maximum charging current: | INR21700-2500mAh: 2500mA, INR21700-3000mAh: 3000mA, INR21700-3500mAh: 3500mA, INR21700-4000mAh: 4000mA, INR21700-5000mAh: 5000mA | | Charging temperature upper limit | 50 °C | | Charging temperature lower limit | 0°C | | Polymer cell electrolyte type | ☐ gel polymer ☐ solid polymer ☒ N/A | | Possible test case verdicts: | | | - test case does not apply to the test object: | N/A | | - test object does meet the requirement: | P (Pass) | | - test object does not meet the requirement: | F (Fail) | | Testing: | | | Date of receipt of test item: | 2025-07-02 | | Date (s) of performance of tests: | 2025-07-02 to 2025-07-29 | | Our and remarks | | | General remarks: | and the first of the second | | "(See Enclosure #)" refers to additional information ap
"(See appended table)" refers to a table appended to the | | | Throughout this report a 🖂 comma / 🗌 point is u | sed as the decimal separator. | | Manufacturer's Declaration per sub-clause 4.2.5 of | IECEE 02: | | The application for obtaining a CB Test Certificate includes more than one factory location and a declaration from the Manufacturer stating that the sample(s) submitted for evaluation is (are) representative of the products from each factory has been provided | ☐ Yes
☑ Not applicable | | When | differences exis | t; they | shall be | identifie | d in the | General | product | information | section. | |------|------------------|---------|----------|-----------|----------|---------|---------|-------------|----------| | | | | | | | | | | | | rianio ana addi 000 on laotory (100/1111111111111111111111111111111111 | s):: | (ies) | factory | of | address | and | Name | |--|------|-------|---------|----|---------|-----|------| |--|------|-------|---------|----|---------|-----|------| ### General product information and other remarks: This cell is constructed with single Rechargeable Li-ion cell, and has overcharge, over-discharge, over current and short-circuits proof circuit. All tests were conducted on models INR21700-2500mAh, INR21700-3000mAh, INR21700-3500mAh, INR21700-4000mAh, and INR21700-5000mAh. All models only have different model names and capacities, the rest are the same. The main features of the cell in the cell are shown as below (clause 7.1.1): | Model | Rated capacity | Nominal
voltage | Nominal
Charge
Current | Nominal
Discharge
Current | Maximum
Charge
Current | Maximum
Discharge
Current | Maximum
Charge
Voltage | Cut-off
Voltage | |----------------------|----------------|--------------------|------------------------------|---------------------------------|------------------------------|---------------------------------|------------------------------|--------------------| | INR21700
-2500mAh | 2500mAh | 3,7V | 1250mA | 1250mA | 2500mA | 7500mA | 4,2V | 2,75V | | INR21700
-3000mAh | 3000mAh | 3,7V | 1500mA | 1500mA | 3000mA | 9000mA | 4,2V | 2,75V | | INR21700
-3500mAh | 3500mAh | 3,7V | 1750mA | 1750mA | 3500mA | 10500mA | 4,2V | 2,75V | | INR21700
-4000mAh | 4000mAh | 3,7V | 2000mA | 2000mA | 4000mA | 12000mA | 4,2V | 2,75V | | INR21700
-5000mAh | 5000mAh | 3,7V | 2500mA | 2500mA | 5000mA | 15000mA | 4,2V | 2,75V | The main features of the cell in the cell are shown as below (clause 7.1.2): | Model | Upper limit charge voltage | Taper-off current | Lower charge temperature | Upper charge temperature | |----------------------|----------------------------|-------------------|--------------------------|--------------------------| | INR21700-
2500mAh | 4,2 Vdc | 125 mA | 0°C | 50°C | | INR21700-
3000mAh | 4,2 Vdc | 150 mA | 0°C | 50°C | | INR21700-
3500mAh | 4,2 Vdc | 175 mA | 0°C | 50°C | | INR21700-
4000mAh | 4,2 Vdc | 200 mA | 0°C | 50°C | | INR21700-
5000mAh | 4,2 Vdc | 250 mA | 0°C | 50°C | Ρ | | IEC 62133-2 | | | |--------|--|--|---------| | Clause | Requirement + Test | Result - Remark | Verdict | | | | | | | 4 | PARAMETER MEASUREMENT TOLERANCES | | Р | | | Parameter measurement tolerances | | Р | | 5 | GENERAL SAFETY CONSIDERATIONS | | Р | | 5.1 | General | | Р | | | Cells and batteries so designed and constructed that they are safe under conditions of both intended use and reasonably foreseeable misuse | | Р | | 5.2 | Insulation and wiring | | Р | | | The insulation resistance between the positive terminal and externally exposed metal surfaces of the battery (excluding electrical contact surfaces) is not less than 5 $\mbox{M}\Omega$ | No metal surface exists. | N/A | | | Insulation resistance (MΩ): | | _ | | | Internal wiring and insulation are sufficient to withstand maximum anticipated current, voltage and temperature requirements | | Р | | | Orientation of wiring maintains adequate clearances and creepage distances between conductors | | Р | | | Mechanical integrity of internal connections accommodates reasonably foreseeable misuse | | Р | | 5.3 | Venting | | Р | | | Battery cases and cells incorporate a pressure relief
mechanism or are constructed so that they relieve
excessive internal pressure at a value and rate that
will preclude rupture, explosion and self-ignition | Vent mechanism exists on the narrow side of the pouch cell. | Р | | | Encapsulation used to support cells within an outer casing does not cause the battery to overheat during normal operation nor inhibit pressure relief | | N/A | | 5.4 | Temperature, voltage and current management | | Р | | | Batteries are designed such that abnormal temperature rise conditions are prevented | | N/A | | | Batteries are designed to be within temperature, voltage and current limits specified by the cell manufacturer | See above. | Р | | | Batteries are provided with specifications and charging instructions for equipment manufacturers so that specified chargers are designed to maintain charging within the temperature, voltage and current limits specified | The charging limits specified in manufacturer's specification. | Р | **Terminal contacts** 5.5 | IEC 62133-2 | | | | | |-------------|--|--|---------|--| | Clause | Requirement + Test | Result - Remark | Verdict | | | | The size and shape of the terminal contacts ensure that they can carry the maximum anticipated current | DC Lead wire complied with the requirements. | Р | | | | External terminal contact surfaces are formed from conductive materials with good mechanical strength and corrosion resistance | Complied. | Р | | | | Terminal contacts are arranged to minimize the risk of short circuits | | Р | | | 5.6 | Assembly of cells into
batteries | | Р | | | 5.6.1 | General | Test cell only. | N/A | | | | Each battery has an independent control and protection for current, voltage, temperature and any other parameter required for safety and to maintain the cells within their operating region | | N/A | | | | This protection may be provided external to the battery such as within the charger or the end devices | | N/A | | | | If protection is external to the battery, the manufacturer of the battery provide this safety relevant information to the external device manufacturer for implementation | | N/A | | | | If there is more than one battery housed in a single battery case, each battery has protective circuitry that can maintain the cells within their operating regions | | N/A | | | | Manufacturers of cells specify current, voltage and temperature limits so that the battery manufacturer/designer may ensure proper design and assembly | | N/A | | | | Batteries that are designed for the selective discharge of a portion of their series connected cells incorporate circuitry to prevent operation of cells outside the limits specified by the cell manufacturer | | N/A | | | | Protective circuit components are added as appropriate and consideration given to the end-device application | | N/A | | | | The manufacturer of the battery provide a safety analysis of the battery safety circuitry with a test report including a fault analysis of the protection circuit under both charging and discharging conditions confirming the compliance | | N/A | | | 5.6.2 | Design recommendation | | Р | | | | For the battery consisting of a single cell or a single cellblock, it is recommended that the charging voltage of the cell does not exceed the upper limit of the charging voltage specified in Table 2 | | N/A | | | IEC 62133-2 | | | | | |-------------|--|---|---------|--| | Clause | Requirement + Test | Result - Remark | Verdict | | | | For the battery consisting of series-connected plural single cells or series-connected plural cellblocks, it is recommended that the voltages of any one of the single cells or single cellblocks does not exceed the upper limit of the charging voltage, specified in Table 2, by monitoring the voltage of every single cell or the single cellblocks | Single cell for pack. | N/A | | | | For the battery consisting of series-connected plural single cells or series-connected plural cellblocks, it is recommended that charging is stopped when the upper limit of the charging voltage is exceeded for any one of the single cells or single cellblocks by measuring the voltage of every single cell or the single cellblocks | | N/A | | | | For batteries consisting of series-connected cells or cell blocks, nominal charge voltage are not counted as an overcharge protection | | N/A | | | | For batteries consisting of series-connected cells or cell blocks, cells have closely matched capacities, be of the same design, be of the same chemistry and be from the same manufacturer | | N/A | | | | It is recommended that the cells and cell blocks are
not discharged beyond the cell manufacturer's
specified final voltage | Final voltage of battery: 2,75V, not exceed the final voltage specified by cell manufacturer. | Р | | | | For batteries consisting of series-connected cells or cell blocks, cell balancing circuitry are incorporated into the battery management system | | N/A | | | 5.6.3 | Mechanical protection for cells and components of batteries | | Р | | | | Mechanical protection for cells, cell connections and control circuits within the battery are provided to prevent damage as a result of intended use and reasonably foreseeable misuse | Mechanical protection for cell connections and control circuits provided. | Р | | | | The mechanical protection can be provided by the battery case or it can be provided by the end product enclosure for those batteries intended for building into an end product | Build-in batteries, mechanical protection for cells should be provided by end product. | N/A | | | | The battery case and compartments housing cells are designed to accommodate cell dimensional tolerances during charging and discharging as recommended by the cell manufacturer | To be evaluated in final system. | N/A | | | | For batteries intended for building into a portable end product, testing with the battery installed within the end product is considered when conducting mechanical tests | | N/A | | | 5.7 | Quality plan | Complied. | Р | | IEC 62133-2 | | Report No. 61687 | 05.50 | |---|--|---------| | | | | | | Result - Remark | Verdict | | | ISO 9001: 2015 certificate provided. | Р | | | See TABLE: Critical components information | Р | | | | | | | | Р | | 3 | | Р | | 1 | Not coin cells | N/A | | 6 | TYPE TEST AND SAMPLE SIZE | | Р | |---|---|-------------------|-----| | | Tests are made with the number of cells or batteries specified in Table 1 using cells or batteries that are not more than six months old | | Р | | | The internal resistance of coin cells are measured in accordance with Annex D. Coin cells with internal resistance less than or equal to 3 Ω are tested in accordance with Table 1 | Not coin cells | N/A | | | Unless otherwise specified, tests are carried out in an ambient temperature of 20 °C ± 5 °C | | Р | | | The safety analysis of 5.6.1 identify those components of the protection circuit that are critical for short-circuit, overcharge and over discharge protection | | Р | | | When conducting the short-circuit test, consideration is given to the simulation of any single fault condition that is likely to occur in the protecting circuit that would affect the short-circuit test | See clause 7.3.2. | Р | | 7 | SPECIFIC REQUIREMENTS AND TESTS | | Р | |-------|--|-------------|---| | 7.1 | Charging procedure for test purposes | | Р | | 7.1.1 | First procedure | | Р | | | This charging procedure applies to subclauses other than those specified in 7.1.2 | | Р | | | Unless otherwise stated in this document, the charging procedure for test purposes is carried out in an ambient temperature of 20 °C ± 5 °C, using the method declared by the manufacturer | See page 6. | Р | | | Prior to charging, the battery has been discharged at 20 °C \pm 5 °C at a constant current of 0,2 It A down to a specified final voltage | | Р | | 7.1.2 | Second procedure | | Р | | | This charging procedure applies only to 7.3.1, 7.3.4, 7.3.5, and 7.3.9 | | Р | Clause 5.8 Requirement + Test The manufacturer prepares and implements a quality plan that defines procedures for the inspection of materials, components, cells and batteries and which covers the whole process of producing each type of cell or battery **Battery safety components** | | IEC 62133-2 | | | | | |--------|--|--|---------|--|--| | Clause | Requirement + Test | Result - Remark | Verdict | | | | | After stabilization for 1 h to 4 h, at an ambient temperature of the highest test temperature and the lowest test temperature, respectively, as specified in Table 2, cells are charged by using the upper limit charging voltage and maximum charging current, until the charging current is reduced to 0,05 lt A, using a constant current to constant voltage charging method | Charge temperature specified
by manufacturer: 0-50°C; 50°C
used for upper limit tests; 0°C
used for lower limit tests. | Р | | | | 7.2 | Intended use | | Р | | | | 7.2.1 | Continuous charging at constant voltage (cells) | Tested complied. | Р | | | | | Fully charged cells are subjected for 7 days to a charge using the charging method for current and standard voltage specified by the cell manufacturer | Charging for 7 days with INR21700-2500mAh: 1250mA, INR21700-3000mAh: 1500mA, INR21700-3500mAh: 1750mA, INR21700-4000mAh: 2000mA, INR21700-5000mAh: 2500mA. | Р | | | | | Results: no fire, no explosion, no leakage: | (See appended table 7.2.1) | Р | | | | 7.2.2 | Case stress at high ambient temperature (battery) | | N/A | | | | | Oven temperature (°C): | | | | | | | Results: no physical distortion of the battery case resulting in exposure of internal protective components and cells | | N/A | | | | 7.3 | Reasonably foreseeable misuse | | Р | | | | 7.3.1 | External short-circuit (cell) | Tested complied. | Р | | | | | The cells were tested until one of the following occurred: | | Р | | | | | - 24 hours elapsed; or | | N/A | | | | | - The case temperature declined by 20 % of the maximum temperature rise | | Р | | | | | Results: no fire, no explosion: | (See appended table 7.3.1) | Р | | | | 7.3.2 | External short-circuit (battery) | | N/A | | | | | The batteries were tested until one of the following
occurred: | | N/A | | | | | - 24 hours elapsed; or | | N/A | | | | | - The case temperature declined by 20 % of the maximum temperature rise | | N/A | | | | | In case of rapid decline in short circuit current, the battery pack remained on test for an additional one hour after the current reached a low end steady state condition | | N/A | | | | | IEC 62133-2 | | | |--------|--|----------------------------|---------| | Clause | Requirement + Test | Result - Remark | Verdict | | | A single fault in the discharge protection circuit is conducted on one to four (depending upon the protection circuit) of the five samples before conducting the short-circuit test | | N/A | | | A single fault applies to protective component parts such as MOSFET (metal oxide semiconductor field-effect transistor), fuse, thermostat or positive temperature coefficient (PTC) thermistor | | N/A | | | Results: no fire, no explosion: | | N/A | | 7.3.3 | Free fall | Tested complied. | Р | | | Results: no fire, no explosion | No fire. No explosion | Р | | 7.3.4 | Thermal abuse (cells) | Tested complied. | Р | | | Oven temperature (°C) | 130°C | _ | | | Results: no fire, no explosion | No fire. No explosion | Р | | 7.3.5 | Crush (cells) | Tested complied. | Р | | | The crushing force was released upon: | | Р | | | - The maximum force of 13 kN \pm 0,78 kN has been applied; or | | Р | | | - An abrupt voltage drop of one-third of the original voltage has been obtained | | N/A | | | Results: no fire, no explosion: | (See appended table 7.3.5) | Р | | 7.3.6 | Over-charging of battery | | N/A | | | The supply voltage which is: | | N/A | | | - 1,4 times the upper limit charging voltage presented in Table A.1 (but not to exceed 6,0 V) for single cell/cell block batteries or | | N/A | | | - 1,2 times the upper limit charging voltage resented in Table A.1 per cell for series connected multi-cell batteries, and | | N/A | | | - Sufficient to maintain a current of 2,0 It A throughout the duration of the test or until the supply voltage is reached | | N/A | | | Test was continued until the temperature of the outer casing: | | N/A | | | - Reached steady state conditions (less than 10 °C change in 30-minute period); or | | N/A | | | - Returned to ambient | | N/A | | | Results: no fire, no explosion: | | N/A | | 7.3.7 | Forced discharge (cells) | Tested complied. | Р | | | IEC 62133-2 | | | |---------|---|--------------------------------------|---------| | Clause | Requirement + Test | Result - Remark | Verdict | | | Discharge a single cell to the lower limit discharge voltage specified by the cell manufacturer | | Р | | | The discharged cell is then subjected to a forced discharge at 1 It A to the negative value of the upper limit charging voltage | | Р | | | - The discharge voltage reaches the negative value of upper limit charging voltage within the testing duration. The voltage is maintained at the negative value of the upper limit charging voltage by reducing the current for the remainder of the testing duration | | N/A | | | - The discharge voltage does not reach the negative value of upper limit charging voltage within the testing duration. The test is terminated at the end of the testing duration | | Р | | | Results: no fire, no explosion: | (See appended table 7.3.7) | Р | | 7.3.8 | Mechanical tests (batteries) | | N/A | | 7.3.8.1 | Vibration | | N/A | | | Results: no fire, no explosion, no rupture, no leakage or venting: | | N/A | | 7.3.8.2 | Mechanical shock | | N/A | | | Results: no leakage, no venting, no rupture, no explosion and no fire: | | N/A | | 7.3.9 | Design evaluation – Forced internal short-circuit (cells) | Tested complied. | Р | | | The cells complied with national requirement for: | France, Japan, Korea,
Switzerland | _ | | | The pressing was stopped upon: | | Р | | | - A voltage drop of 50 mV has been detected; or | | N/A | | | - The pressing force of 800 N (cylindrical cells) or 400 N (prismatic cells) has been reached | 800N | Р | | | Results: no fire: | (See appended table 7.3.9) | Р | | 8 | INFORMATION FOR SAFETY | | | |-----|--|--|---| | 8.1 | General | | Р | | | Manufacturers of secondary cells provides information about current, voltage and temperature limits of their products | Information for safety mentioned in manufacturer's specifications. | Р | | | Manufacturers of batteries provides information regarding how to minimize and mitigate hazards to equipment manufacturers or end-users | Information for safety mentioned in manufacturer's specifications. | Р | | | IEC 62133-2 | | | |--------|---|-----------------|-----| | Clause | Requirement + Test | Result - Remark | | | | Systems analyses are performed by device manufacturers to ensure that a particular battery design prevents hazards from occurring during use of a product | | N/A | | | As appropriate, any information relating to hazard avoidance resulting from a system analysis is provided to the end user | | N/A | | | Do not allow children to replace batteries without adult supervision | | N/A | | 8.2 | Small cell and battery safety information | | N/A | | | The following warning language is to be provided with the information packaged with the small cells and batteries or equipment using them: | | N/A | | | - Keep small cells and batteries which are considered swallowable out of the reach of children | | N/A | | | - Swallowing may lead to burns, perforation of soft tissue, and death. Severe burns can occur within 2 h of ingestion | | N/A | | | - In case of ingestion of a cell or battery, seek medical assistance promptly | | N/A | | 9 | MARKING | | | |-----|---|-----------------------------|-----| | 9.1 | Cell marking | | Р | | | Cells are marked as specified in IEC 61960, except coin cells | See marking plate on page 5 | Р | | | Coin cells whose external surface area is too small to accommodate the markings on the cells show the designation and polarity | | N/A | | | By agreement between the cell manufacturer and the battery and/or end product manufacturer, component cells used in the manufacture of a battery need not be marked | | Р | | 9.2 | Battery marking | | N/A | | | Batteries are marked as specified in IEC 61960, except for coin batteries | | N/A | | | Coin batteries whose external surface area is too small to accommodate the markings on the batteries show the designation and polarity | | N/A | | | Batteries are marked with an appropriate caution statement | | N/A | | | - Terminals have clear polarity marking on the external surface of the battery, or | | N/A | N/A N/A Ρ Ρ | IEC 62133-2 | | | | | |--|---|---|--|--| | Requirement + Test Result - Remark | | | | | | - Not be marked with polarity markings if the design of the external connector prevents reverse polarity connections | | N/A | | | | Caution for ingestion of small cells and batteries | | N/A | | | | Coin cells and batteries identified as small
batteries include a caution statement regarding the hazards of ingestion in accordance with 8.2 | No coin batteries. | N/A | | | | Small cells and batteries are intended for direct sale in consumer-replaceable applications, caution for ingestion is given on the immediate package | Not intended for direct sale. | N/A | | | | Other information | | Р | | | | The following information are marked on or supplied with the battery: | | Р | | | | - Storage and disposal instructions | Information for storage and disposal instructions mentioned in manufacturer's specifications. | Р | | | | - Recommended charging instructions | Information for recommended charging instructions mentioned in manufacturer's specifications. | Р | | | | PACKAGING AND TRANSPORT | | Р | | | | Packaging for coin cells are not be small enough to fit within the limits of the ingestion gauge of Figure 3 | Not coin cells. | N/A | | | | CHARGING AND DISCHARGING RANGE OF SECONDARY LITHIUM ION CELLS FOR SAFE USE | | | | | | General | | Р | | | | Safety of lithium ion secondary battery | Complied. | Р | | | | Consideration on charging voltage | Complied. | Р | | | | General | | Р | | | | Upper limit charging voltage | 4,2V. | Р | | | | | | | | | | | - Not be marked with polarity markings if the design of the external connector prevents reverse polarity connections Caution for ingestion of small cells and batteries Coin cells and batteries identified as small batteries include a caution statement regarding the hazards of ingestion in accordance with 8.2 Small cells and batteries are intended for direct sale in consumer-replaceable applications, caution for ingestion is given on the immediate package Other information The following information are marked on or supplied with the battery: - Storage and disposal instructions PACKAGING AND TRANSPORT Packaging for coin cells are not be small enough to fit within the limits of the ingestion gauge of Figure 3 CHARGING AND DISCHARGING RANGE OF SECCELLS FOR SAFE USE General Safety of lithium ion secondary battery Consideration on charging voltage General | - Not be marked with polarity markings if the design of the external connector prevents reverse polarity connections Caution for ingestion of small cells and batteries Coin cells and batteries identified as small batteries include a caution statement regarding the hazards of ingestion in accordance with 8.2 Small cells and batteries are intended for direct sale in consumer-replaceable applications, caution for ingestion is given on the immediate package Other information The following information are marked on or supplied with the battery: - Storage and disposal instructions Information for storage and disposal instructions mentioned in manufacturer's specifications. - Recommended charging instructions Information for recommended charging instructions mentioned in manufacturer's specifications. PACKAGING AND TRANSPORT Packaging for coin cells are not be small enough to fit within the limits of the ingestion gauge of Figure 3 CHARGING AND DISCHARGING RANGE OF SECONDARY LITHIUM ION CELLS FOR SAFE USE General Safety of lithium ion secondary battery Complied. Consideration on charging voltage General | | | current General A.3.2.2 A.3.2.3 **A.4** A.4.1 Explanation of safety viewpoint charging voltage is applied Safety requirements, when different upper limit Consideration of temperature and charging | | IEC 62133-2 | | | |---------|---|---|---------| | Clause | Requirement + Test | Result - Remark | Verdict | | A.4.2 | Recommended temperature range | See A.4.2.2. | Р | | A.4.2.1 | General | | Р | | A.4.2.2 | Safety consideration when a different recommended temperature range is applied | Charging temperature declared by client is: 0-50°C | Р | | A.4.3 | High temperature range | Charging higher temperature declared is: 50°C | Р | | A.4.3.1 | General | | Р | | A.4.3.2 | Explanation of safety viewpoint | | Р | | A.4.3.3 | Safety considerations when specifying charging conditions in the high temperature range | | Р | | A.4.3.4 | Safety considerations when specifying a new upper limit in the high temperature range | | N/A | | A.4.4 | Low temperature range | Charging lower temperature declared is: 0°C | Р | | A.4.4.1 | General | | Р | | A.4.4.2 | Explanation of safety viewpoint | | Р | | A.4.4.3 | Safety considerations, when specifying charging conditions in the low temperature range | | Р | | A.4.4.4 | Safety considerations when specifying a new lower limit in the low temperature range | | Р | | A.4.5 | Scope of the application of charging current | | Р | | A.4.6 | Consideration of discharge | | Р | | A.4.6.1 | General | | Р | | A.4.6.2 | Final discharge voltage and explanation of safety viewpoint | Battery specified final voltage 2,75V, not exceed the final voltage specified by cell manufacturer. | Р | | A.4.6.3 | Discharge current and temperature range | | Р | | A.4.6.4 | Scope of application of the discharging current | | Р | | A.5 | Sample preparation | | Р | | A.5.1 | General | | Р | | A.5.2 | Insertion procedure for nickel particle to generate internal short | | Р | | A.5.3 | Disassembly of charged cell | | Р | | A.5.4 | Shape of nickel particle | | Р | | A.5.5 | Insertion of nickel particle in cylindrical cell | | Р | | A.5.5.1 | Insertion of nickel particle in winding core | | Р | | Page 20 of 39 | Report No. 616 | 8705.50 | |---|--------------------------|---------| | IEC 62133-2 | | | | Requirement + Test | Result - Remark | Verdict | | Marking the position of the nickel particle on both ends of the winding core of the separator | | Р | | Insertion of nickel particle in prismatic cell | | N/A | | Experimental procedure of the forced internal short-circuit test | | Р | | Material and tools for preparation of nickel particle | | Р | | Example of a nickel particle preparation procedure | | Р | | Positioning (or placement) of a nickel particle | | Р | | Damaged separator precaution | | Р | | Caution for rewinding separator and electrode | | Р | | Insulation film for preventing short-circuit | | Р | | Caution when disassembling a cell | | Р | | Protective equipment for safety | | Р | | Caution in the case of fire during disassembling | | Р | | Caution for the disassembling process and pressing the electrode core | | Р | | Recommended specifications for the pressing device | | Р | | RECOMMENDATIONS TO EQUIPMENT MANUFACASSEMBLERS | CTURERS AND BATTERY | N/A | | RECOMMENDATIONS TO THE END-USERS | | N/A | | | | | | MEASUREMENT OF THE INTERNAL AC RESIST | ANCE FOR COIN CELLS | N/A | | General | Not coin cells. | N/A | | Method | | N/A | | A sample size of three coin cells is required for this measurement | | N/A | | Coin cells with an internal resistance greater than 3 | (See appended table D.2) | N/A | | ANNEX C | RECOMMENDATIONS TO THE END-USERS | | | | | | |---------|--|--------------------------|-----|--|--|--| | ANNEX D | MEASUREMENT OF THE INTERNAL AC RESISTANCE FOR COIN CELLS N/ | | | | | | | D.1 | General Not coin cells. | | | | | | | D.2 | Method | | | | | | | | A sample size of three coin cells is required for this measurement | | N/A | | | | | | Coin cells with an internal resistance greater than 3 Ω require no further testing: | (See appended table D.2) | N/A | | | | | | Coin cells with an internal resistance less than or equal to 3 Ω are subjected to the testing according to Clause 6 and Table 1 | | N/A | | | | | ANNEX E | PACKAGING AND TRANSPORT | N/A | |---------|--------------------------------|-----| | | | | | ANNEX F | COMPONENT STANDARDS REFERENCES | N/A | Clause A.5.5.2 A.5.6 **A.6** A.6.1 A.6.2 A.6.3 A.6.4 A.6.5 A.6.6 A.6.7 A.6.8 A.6.9 A.6.10 A.6.11 ANNEX B | | | IEC 62133-2 | | | |--------|--------------------|-------------|-----------------|---------| | Clause | Requirement + Test | | Result - Remark | Verdict | | 7.2.1 TABLE | : Continuous charging | g at constant voltage | (cells) | Р | | | | | |------------------|---------------------------------------|---|--------------------------|---------|--|--|--|--| | Sample no. | Recommended charging voltage Vc (Vdc) | Recommended charging current I _{rec} (A) | OCV before test
(Vdc) | Results | | | | | | INR21700-2500mAh | | | | | | | | | | Cell #1 | 4,2 | 1,25 | 4,2 | Р | | | | | | Cell #2 | 4,2 | 1,25 | 4,2 | Р | | | | | | Cell #3 | 4,2 | 1,25 | 4,2 | Р | | | | | | Cell #4 | 4,2 | 1,25 | 4,2 | Р | | | | | | Cell #5 | 4,2 | 1,25 | 4,2 | Р | | | | | | | ı | NR21700-3000mAh | | | | | | | | Cell #54 | 4,2 | 1,50 | 4,2 | Р | | | | | | Cell #55 | 4,2 | 1,50 | 4,2 | Р | | | | | | Cell #56 | 4,2 | 1,50 | 4,2 | Р | | | | | | Cell #57 | 4,2 | 1,50 | 4,2 | Р | | | | | | Cell #58 | 4,2 | 1,50 | 4,2 | Р | | | | | | | ı | NR21700-3500mAh | | | | | | | | Cell #107 | 4,2 | 1,75 | 4,2 | Р | | | | | | Cell #108 | 4,2 | 1,75 | 4,2 | Р | | | | | | Cell #109 | 4,2 | 1,75 | 4,2 | Р | | | | | | Cell #110 | 4,2 | 1,75 | 4,2 | Р | | | | | | Cell #111 | 4,2 | 1,75 | 4,2 | Р | | | | | | | | NR21700-4000mAh | | | | | | | | Cell #160 | 4,2 | 2,00 | 4,2 | Р | | | | | | Cell #161 | 4,2 | 2,00 | 4,2 | Р | | | | | | Cell #162 | 4,2 | 2,00 | 4,2 | Р | | | | | | Cell #163 | 4,2 | 2,00 | 4,2 | Р | | | | | | Cell #164 | 4,2 | 2,00 | 4,2 | Р | | | | | | INR21700-5000mAh | | | | | | | | | | Cell #213 | 4,2 | 2,50 | 4,2 | Р | | | | | | Cell #214 | 4,2 | 2,50 | 4,2 | Р | | | | | | Cell #215 | 4,2 | 2,50 | 4,2 | Р | | | | | | Cell #216 | 4,2 | 2,50 | 4,2 | Р | | | | | | Cell #217 | 4,2 | 2,50 | 4,2 | Р | | | | | | | | IEC 62133-2 | | | |--------|--------------------
-------------|-----------------|---------| | Clause | Requirement + Test | | Result - Remark | Verdict | - No fire or explosionNo leakage | 3.1 T | ABLE: External short | -circuit (cell) | | | Р | |-----------|----------------------|----------------------------------|----------------------------|--------------------------------------|---------| | Sample no | . Ambient T (°C) | OCV before test (Vdc) | Resistance of circuit (mΩ) | Maximum case temperature rise ∆T, °C | Results | | | Samples charg | INR21700-2
ged at charging to | | · limit (50°C) | | | Cell 6# | 55,0 | 4,2 | 79 | 62,3 | P | | Cell 7# | 55,0 | 4,2 | 81 | 65,8 |
Р | | Cell 8# | 55,0 | 4,2 | 85 | 61,3 | Р | | Cell 9# | 55,0 | 4,2 | 84 | 64,1 | Р | | Cell 10# | 55,0 | 4,2 | 83 | 67,1 | Р | | | Samples char | ged at charging to | emperature uppe | er limit (0°C) | | | Cell 11# | 55,0 | 4,2 | 85 | 65,7 | Р | | Cell 12# | 55,0 | 4,2 | 87 | 62,5 | Р | | Cell 13# | 55,0 | 4,2 | 87 | 63,9 | Р | | Cell 14# | 55,0 | 4,2 | 81 | 63,0 | Р | | Cell 15# | 55,0 | 4,2 | 86 | 64,8 | Р | | | Samples charg | INR21700-3
ged at charging to | | · limit (50°C) | | | Cell 59# | 55,0 | 4,2 | 85 | 62,8 | Р | | Cell 60# | 55,0 | 4,2 | 89 | 65,5 | Р | | Cell 61# | 55,0 | 4,2 | 87 | 64,3 | Р | | Cell 62# | 55,0 | 4,2 | 80 | 64,2 | Р | | Cell 63# | 55,0 | 4,2 | 76 | 66,3 | Р | | | Samples char | ged at charging to | emperature uppe | r limit (0°C) | | | Cell 64# | 55,0 | 4,2 | 88 | 66,7 | Р | | Cell 65# | 55,0 | 4,2 | 89 | 64,8 | Р | | Cell 66# | 55,0 | 4,2 | 87 | 63,3 | Р | | Cell 67# | 55,0 | 4,2 | 85 | 64,2 | Р | | Cell 68# | 55,0 | 4,2 | 78 | 64,1 | Р | | | Samples charg | INR21700-3
ged at charging to | | · limit (50°C) | | | Cell 112# | 55,0 | 4,2 | 85 | 66,0 | Р | | | | 1 | l | ı | | | | | | IEC 621 | 33-2 | | | |---|---|----------------|----------------------------------|------|------------------|---------| | Clause | Requ | irement + Test | | Res | ult - Remark | Verdict | | Cell 113 | 3# | 55,0 | 4,2 | 89 | 64,2 | Р | | Cell 114 | 4# | 55,0 | 4,2 | 79 | 63,8 | Р | | Cell 11 | 5# | 55,0 | 4,2 | 86 | 65,2 | Р | | Cell 116 | 6# | 55,0 | 4,2 | 80 | 64,5 | Р | | Samples charged at charging temperature upper limit (0°C) | | | | | | | | Cell 117 | 7# | 55,0 | 4,2 | 82 | 65,7 | Р | | Cell 118 | 8# | 55,0 | 4,2 | 85 | 64,8 | Р | | Cell 119 | 9# | 55,0 | 4,2 | 84 | 63,3 | Р | | Cell 120 | 0# | 55,0 | 4,2 | 89 | 62,3 | Р | | Cell 12 | 1# | 55,0 | 4,2 | 80 | 61,1 | Р | | | | Samples char | INR21700-4
ged at charging to | | ver limit (50°C) | | | Cell 16 |
5# | 55,0 | 4,2 | 74 | 66,3 | Р | | Cell 166 | | 55,0 | 4,2 | 81 | 65,4 | P | | Cell 16 | | 55,0 | 4,2 | 87 | 65,3 | Р | | Cell 168 | | 55,0 | 4,2 | 78 | 62,3 | Р | | Cell 169 | 9# | 55,0 | 4,2 | 80 | 64,5 | Р | | | Samples charged at charging temperature upper limit (0°C) | | | | | | | Cell 170 | O# | 55,0 | 4,2 | 79 | 65,0 | Р | | Cell 17 | 1# | 55,0 | 4,2 | 83 | 64,4 | Р | | Cell 172 | 2# | 55,0 | 4,2 | 84 | 64,3 | Р | | Cell 173 | 3# | 55,0 | 4,2 | 82 | 62,3 | Р | | Cell 17 | 4# | 55,0 | 4,2 | 73 | 65,1 | Р | | | | Samples char | INR21700-5 | | ver limit (50°C) | | | Cell 218 |
8# | 55,0 | 4,2 | 80 | 65,5 | Р | | Cell 219 | | 55,0 | 4,2 | 81 | 63,4 | P | | Cell 220 | | 55,0 | 4,2 | 87 | 64,5 | P | | Cell 22 | | 55,0 | 4,2 | 80 | 63,3 | Р | | Cell 222 | 2# | 55,0 | 4,2 | 80 | 65,4 | Р | | | | | ged at charging to | | | | | Cell 223 | 3# | 55,0 | 4,2 | 89 | 64,5 | Р | | Cell 224 | 4# | 55,0 | 4,2 | 82 | 63,8 | Р | | Cell 22 | 5# | 55,0 | 4,2 | 87 | 64,5 | Р | | Cell 226 | 6# | 55,0 | 4,2 | 70 | 64,7 | Р | | | IEC 62133-2 | | | | | | | | |----------|---|----------------|--|--|--------|----------|--|---------| | Clause | Requi | irement + Test | | | Result | - Remark | | Verdict | | Cell 227 | Cell 227# 55,0 4,2 80 65,7 P | | | | | | | | | | Supplementary information: - No fire or explosion | | | | | | | | | 7.3.2 | TABLE: Externa | ABLE: External short circuit (battery) | | | | | | | |-----------|----------------|--|----------------------------|--------------------------------------|----------------------------------|---|---------|--| | Sample No | o. Ambient T | OCV before test (Vdc) | Resistance of circuit (mΩ) | Maximum case temperature rise ΔT (K) | Component single fault condition | F | Results | - No fire or explosion - Others (please explain) | 7.3.5 | TABLE: | Crush (cells) | | | | Р | |------------|--------|--------------------------|--|---|----|--------| | Sample no. | | OCV before test
(Vdc) | OCV at removal of crushing force (Vdc) | Maximum force applied to the cell during crush (kN) | Re | esults | | | | IN | IR21700-2500mAh | | | | | | ; | Samples charged at c | harging temperature I | ower limit (50°C) | | | | Cell 3 | 34# | 4,2 | 4,2 | 13,0 | | Р | | Cell 3 | 35# | 4,2 | 4,2 | 13,0 | | Р | | Cell 3 | 36# | 4,2 | 4,2 | 13,0 | | Р | | Cell 3 | 37# | 4,2 | 4,2 | 13,0 | | Р | | Cell 3 | 38# | 4,2 | 4,2 | 13,0 | | Р | | | | Samples charged at c | harging temperature | upper limit (0°C) | | | | Cell 2 | 29# | 4,2 | 4,2 | 13,0 | | Р | | Cell 3 | 30# | 4,2 | 4,2 | 13,0 | | Р | | Cell 3 | 31# | 4,2 | 4,2 | 13,0 | | Р | | Cell 3 | 32# | 4,2 | 4,2 | 13,0 | | Р | | Cell 3 | 33# | 4,2 | 4,2 | 13,0 | | Р | | | | IN | IR21700-3000mAh | | | | | | | Samples charged at cl | harging temperature I | ower limit (50°C) | | | | | | | IEC 62133-2 | | | |--------|----------|-----------------------|-------------------|-----------------------|---------| | Clause | Requirem | ent + Test | | Result - Remark | Verdict | | Се | II 87# | 4,2 | 4,2 | 13,0 | Р | | Ce | II 88# | 4,2 | 4,2 | 13,0 | P | | Ce | II 89# | 4,2 | 4,2 | 13,0 | P | | Се | II 90# | 4,2 | 4,2 | 13,0 | P | | Се | II 91# | 4,2 | 4,2 | 13,0 | Р | | | | Samples charged at c | harging temperatu | re upper limit (0°C) | | | Ce | II 82# | 4,2 | 4,2 | 13,0 | Р | | Ce | II 83# | 4,2 | 4,2 | 13,0 | Р | | Ce | II 84# | 4,2 | 4,2 | 13,0 | Р | | Ce | II 85# | 4,2 | 4,2 | 13,0 | Р | | Ce | II 86# | 4,2 | 4,2 | 13,0 | Р | | | | IN | R21700-3500mAh | | | | | ; | Samples charged at cl | harging temperatu | re lower limit (50°C) | | | Cel | l 140# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 141# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 142# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 143# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 144# | 4,2 | 4,2 | 13,0 | Р | | | | Samples charged at c | harging temperatu | re upper limit (0°C) | | | Cel | l 135# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 136# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 137# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 138# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 139# | 4,2 | 4,2 | 13,0 | Р | | | | | R21700-4000mAh | | | | | | Samples charged at cl | narging temperatu | re lower limit (50°C) | | | Cel | l 193# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 194# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 195# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 196# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 197# | 4,2 | 4,2 | 13,0 | Р | | | | Samples charged at c | harging temperatu | re upper limit (0°C) | | | Cel | l 188# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 189# | 4,2 | 4,2 | 13,0 | Р | | Cel | l 190# | 4,2 | 4,2 | 13,0 | Р | | | | | IEC 62133-2 | | | |--------|-----------|---------------------|-----------------|-------------------------|---------| | Clause | Requireme | nt + Test | | Result - Remark | Verdict | | Cell ' | 191# | 4,2 | 4,2 | 13,0 | Р | | Cell ' | 192# | 4,2 | 4,2 | 13,0 | Р | | | | IN | IR21700-5000mA | h | | | | S | amples charged at c | harging tempera | ture lower limit (50°C) | | | Cell 2 | 246# | 4,2 | 4,2 | 13,0 | Р | | Cell 2 | 247# | 4,2 | 4,2 | 13,0 | Р | | Cell 2 | 248# | 4,2 | 4,2 | 13,0 | Р | | Cell 2 | 249# | 4,2 | 4,2 | 13,0 | Р | | Cell 2 | 250# | 4,2 | 4,2 | 13,0 | Р | | | S | amples charged at c | harging tempera | ture upper limit (0°C) | | | Cell 2 | 241# | 4,2 | 4,2 | 13,0 | Р | | Cell 2 | 242# | 4,2 | 4,2 | 13,0 | Р | | Cell 2 | 243# | 4,2 | 4,2 | 13,0 | Р | | Cell 2 | 244# | 4,2 | 4,2 | 13,0 | Р | | Cell 2 | 245# | 4,2 | 4,2 | 13,0 | Р | | 7.3.6 | 7.3.6 TABLE: Over-charging of battery | | | | | | N/A | |-------------|---------------------------------------|------------|---|---------------------|-------------------------------------|----|--------| | Constant c | Constant charging current (A): | | | | | | | | Supply volt | age (V | dc) | : | | | | _ | | • | | | | rging time
nute) | Maximum outer case temperature (°C) | Re | esults | Supplemen | tary in | formation: | | | | | | | 7.3.7 TABLE: Forced discharge (cells) | | | | | Р | | |---------------------------------------|-----|--|--------------------------------|-------------------------------------|------|------| | Sample | no. | OCV before
application of
reverse charge (Vdc) | Measured reverse charge It (A) | Lower limit discharge voltage (Vdc) | Resi | ults | No fire or explosionOthers (please explain) | | | IEC 62133-2 | | | |--------|--------------------|-------------|-----------------|---------| | Clause | Requirement + Test | | Result - Remark | Verdict | | | ı | NR21700-2500mAh | | | |-----------|------|-----------------|------|---| | Cell 39# | 2,76 | 2,5 | 2,75 | Р | | Cell 40# | 2,76 | 2,5 | 2,75 | Р | | Cell 41# | 2,76 | 2,5 | 2,75 | Р | | Cell 42# | 2,76 | 2,5 | 2,75 | Р | | Cell 43# | 2,76 | 2,5 | 2,75 | Р | | | ı | NR21700-3000mAh | | | | Cell 92# | 2,76 | 3,0 | 2,75 | Р | | Cell 93# | 2,76 | 3,0 | 2,75 | Р | | Cell 94# | 2,76 | 3,0 | 2,75 | Р | | Cell 95# | 2,76 | 3,0 | 2,75 | Р | | Cell 96# | 2,76 | 3,0 | 2,75 | Р | | | I | NR21700-3500mAh | | | | Cell 145# | 2,76 |
3,5 | 2,75 | Р | | Cell 146# | 2,76 | 3,5 | 2,75 | Р | | Cell 147# | 2,76 | 3,5 | 2,75 | Р | | Cell 148# | 2,76 | 3,5 | 2,75 | Р | | Cell 149# | 2,76 | 3,5 | 2,75 | Р | | | ı | NR21700-4000mAh | | | | Cell 198# | 2,76 | 4,0 | 2,75 | Р | | Cell 199# | 2,76 | 4,0 | 2,75 | Р | | Cell 200# | 2,76 | 4,0 | 2,75 | Р | | Cell 201# | 2,76 | 4,0 | 2,75 | Р | | Cell 202# | 2,76 | 4,0 | 2,75 | Р | | | ı | NR21700-5000mAh | | | | Cell 251# | 2,76 | 5,0 | 2,75 | Р | | Cell 252# | 2,76 | 5,0 | 2,75 | Р | | Cell 253# | 2,76 | 5,0 | 2,75 | Р | | Cell 254# | 2,76 | 5,0 | 2,75 | Р | | Cell 255# | 2,76 | 5,0 | 2,75 | Р | - No fire or explosion | 7.3.8.1 TABLE: Vibration | N/A | |--------------------------|-----| |--------------------------|-----| | | | IEC 62133-2 | | | |--------|--------------------|-------------|-----------------|---------| | Clause | Requirement + Test | | Result - Remark | Verdict | | Sample No. | OCV before test (Vdc) | OCV after test
(Vdc) | Mass before test (g) | Mass after test
(g) | Results | |------------|-----------------------|-------------------------|----------------------|------------------------|---------| - No fire or explosion - No rupture - No leakage - No venting - Others (please explain) | 7.3.8.2 | TAE | TABLE: Mechanical shock | | | | | | |----------|-----|-------------------------|-------------------------|----------------------|------------------------|----|-------| | Sample N | 0. | OCV before test (Vdc) | OCV after test
(Vdc) | Mass before test (g) | Mass after test
(g) | Re | sults | # **Supplementary information:** - No fire or explosion - No rupture - No leakage - No venting - Others (please explain) | 7.3.9 | TAB | LE: Forced interna | l short circuit (ce | lls) | | | Р | | | |------------|--|---------------------------|-----------------------|------------------------------------|------------------------------------|----|--------|--|--| | Sample no. | | Chamber
ambient T (°C) | OCV before test (Vdc) | Particle
location ¹⁾ | Maximum
applied
pressure (N) | Re | esults | | | | | INR21700-2500mAh | | | | | | | | | | | | Samples charg | ed at charging te | mperature lower | limit (50°C) | | | | | | Cell 49# | # | 50 | 4,2 | 1 | 800 | | Р | | | | Cell 50# | # | 50 | 4,2 | 1 | 800 | | Р | | | | Cell 51# | # | 50 | 4,2 | 2 | 800 | | Р | | | | Cell 52# | # | 50 | 4,2 | 1 | 800 | | Р | | | | Cell 53# | # | 50 | 4,2 | 1 | 800 | | Р | | | | | Samples charged at charging temperature upper limit (0°C) | | | | | | | | | | Cell 44# | # | 0 | 4,2 | 2 | 800 | _ | Р | | | | | | | IEC 621 | 33-2 | | | | | | |---------|---|----------------|--------------------|---------------|-------------------|---------|--|--|--| | Clause | Requ | irement + Test | | Res | sult - Remark | Verdict | | | | | Cell 4 | 5# | 0 | 4,2 | 1 | 800 | Р | | | | | Cell 4 | 6# | 0 | 4,2 | 1 | 800 | Р | | | | | Cell 4 | 7# | 0 | 4,2 | 1 | 800 | Р | | | | | Cell 4 | 8# | 0 | 4,2 | 2 | 800 | Р | | | | | | | | INR21700-3 | 000mAh | | | | | | | | Samples charged at charging temperature lower limit (50°C) | | | | | | | | | | Cell 10 |)2# | 50 | 4,2 | 1 | 800 | Р | | | | | Cell 10 |)3# | 50 | 4,2 | 1 | 800 | Р | | | | | Cell 10 |)4# | 50 | 4,2 | 2 | 800 | Р | | | | | Cell 10 |)5# | 50 | 4,2 | 1 | 800 | Р | | | | | Cell 10 | 06# | 50 | 4,2 | 1 | 800 | Р | | | | | | | Samples char | ged at charging to | emperature up | per limit (0°C) | | | | | | Cell 9 | 7# | 0 | 4,2 | 2 | 800 | Р | | | | | Cell 9 | 8# | 0 | 4,2 | 1 | 800 | Р | | | | | Cell 9 | 9# | 0 | 4,2 | 1 | 800 | Р | | | | | Cell 10 | 00# | 0 | 4,2 | 1 | 800 | Р | | | | | Cell 10 |)1# | 0 | 4,2 | 2 | 800 | Р | | | | | | | | INR21700-3 | | | | | | | | | | - | ged at charging te | <u> </u> | 1 | | | | | | Cell 15 | | 50 | 4,2 | 1 | 800 | Р | | | | | Cell 15 | | 50 | 4,2 | 1 | 800 | Р | | | | | Cell 15 | | 50 | 4,2 | 2 | 800 | Р | | | | | Cell 15 | | 50 | 4,2 | 1 | 800 | Р | | | | | Cell 15 | 59# | 50 | 4,2 | 1 | 800 | Р | | | | | | | Samples char | ged at charging to | | pper limit (0°C) | | | | | | Cell 15 | 50# | 0 | 4,2 | 2 | 800 | Р | | | | | Cell 15 | 51# | 0 | 4,2 | 1 | 800 | Р | | | | | Cell 15 | 52# | 0 | 4,2 | 1 | 800 | Р | | | | | Cell 15 | 53# | 0 | 4,2 | 1 | 800 | Р | | | | | Cell 15 | 54# | 0 | 4,2 | 2 | 800 | Р | | | | | | | 0 | INR21700-4 | | | | | | | | | | | jed at charging te | | | | | | | | Cell 20 | | 50 | 4,2 | 1 | 800 | Р | | | | | Cell 20 | | 50 | 4,2 | 1 | 800 | Р | | | | | Cell 21 | 10# | 50 | 4,2 | 2 | 800 | Р | | | | | | | | IEC 621 | 33-2 | | | | | |------------------|------|----------------|--------------------|----------------|-----------------|---------|--|--| | Clause | Requ | irement + Test | | Resul | t - Remark | Verdict | | | | Cell 2 | 11# | 50 | 4,2 | 1 | 800 | Р | | | | Cell 2 | 12# | 50 | 4,2 | 1 | 800 | Р | | | | | | Samples charg | ged at charging to | emperature upp | er limit (0°C) | | | | | Cell 2 | .03# | 0 | 4,2 | 2 | 800 | Р | | | | Cell 2 | :04# | 0 | 4,2 | 1 | 800 | Р | | | | Cell 2 | :05# | 0 | 4,2 | 1 | 800 | Р | | | | Cell 2 | :06# | 0 | 4,2 | 1 | 800 | Р | | | | Cell 2 | :07# | 0 | 4,2 | 2 | 800 | Р | | | | INR21700-5000mAh | | | | | | | | | | | | Samples charg | ed at charging te | mperature lowe | r limit (50°C) | | | | | Cell 2 | :61# | 50 | 4,2 | 1 | 800 | Р | | | | Cell 2 | :62# | 50 | 4,2 | 1 | 800 | Р | | | | Cell 2 | :63# | 50 | 4,2 | 2 | 800 | Р | | | | Cell 2 | :64# | 50 | 4,2 | 1 | 800 | Р | | | | Cell 2 | :65# | 50 | 4,2 | 1 | 800 | Р | | | | | | Samples charg | ged at charging to | emperature upp | er limit (0°C) | | | | | Cell 2 | 256# | 0 | 4,2 | 2 | 800 | Р | | | | Cell 2 | 257# | 0 | 4,2 | 1 | 800 | Р | | | | Cell 2 | 258# | 0 | 4,2 | 1 | 800 | Р | | | | Cell 2 | :59# | 0 | 4,2 | 1 | 800 | Р | | | | Cell 2 | :60# | 0 | 4,2 | 2 | 800 | Р | | | - 1) Identify one of the following: - 1: Nickel particle inserted between positive and negative (active material) coated area. - 2: Nickel particle inserted between positive aluminium foil and negative active material coated area. - No fire - *:No location 2 in this cell. | D.2 | TABLE: Internal AC resistance for coin cells | | | | | N/A | |------------|--|----------------|----------------|--------------------|----|----------| | Sample no. | | Ambient T (°C) | Store time (h) | Resistance Rac (Ω) | Re | sults 1) | ## **Supplementary information:** $^{1)}$ Coin cells with an internal resistance less than or equal to 3 Ω , see test result on corresponding tables according to Clause 6 and Table 1. | | | | IEC 62133-2 | | | |--------|-----|--------------------|-------------|-----------------|---------| | Clause | e R | Requirement + Test | | Result - Remark | Verdict | | TA | ABLE: Critical comp | onents informati | on | | | |------------------------|----------------------------|----------------------|--|----------------------|-------------------------------------| | Object / part
No. | Manufacturer/
trademark | Type / model | Technical data | Standard | Mark(s) of conformity ¹⁾ | | Cell | | INR21700-
2500mAh | 2500mAh 3.7V
9.25Wh | IEC 62133-
2:2017 | Test with compliance | | Cell | | INR21700-
3000mAh | 3000mAh 3.7V
11.1Wh | IEC 62133-
2:2017 | Test with compliance | | Cell | | INR21700-
3500mAh | 3500mAh 3.7V
12.95Wh | IEC 62133-
2:2017 | Test with compliance | | Cell | | INR21700-
4000mAh | 4000mAh 3.7V
14.8Wh | IEC 62133-
2:2017 | Test with compliance | | Cell | | INR21700-
5000mAh | 5000mAh 3.7V
18.5Wh | IEC 62133-
2:2017 | Test with compliance | | Cell | | INR21700-
3800mAh | 3800mAh 3.7V
14.06Wh | IEC 62133-
2:2017 | Test with compliance | | Cell | | INR21700-
4500mAh | 4500mAh 3.7V
16.65Wh | IEC 62133-
2:2017 | Test with compliance | | Cell | | INR21700-
4800mAh | 4800mAh 3.7V
17.76Wh | IEC 62133-
2:2017 | Test with compliance | | -Positive
electrode | | L8350A | NI+CO+Mn
8:1:1 | IEC 62133-
2:2017 | Test with compliance | | -Negative
electrode | | J-002 | FC≥99.9% | IEC 62133-
2:2017 | Test with compliance | | -Separator | | 66.5*0.016mm | 150~350sec/100m
I
38~46%
≥400gf | IEC 62133-
2:2017 | Test with compliance | | -Electrolyte | | JB-CJ5C04S | H2O<20ppm,
HF≪50ppm | IEC 62133-
2:2017 | Test with compliance | | | IEC 62133-2 | | | |--------|--------------------|-----------------|---------| | Clause | Requirement + Test | Result - Remark | Verdict | ¹⁾ Provided evidence ensures the agreed level of compliance. See OD-CB2039. | Report No. 61 | 168705.50 |) | |---------------|-----------|---| |---------------|-----------|---| | | | IEC 62133-2 | | | |--------|--------------------|-------------|-----------------|---------| | Clause | Requirement + Test | | Result - Remark | Verdict | | IEC62133_2A ATTACHMENT | | | | | |------------------------|--------------------|--|-----------------|---------| | Clause | Requirement + Test | | Result - Remark | Verdict | ### ATTACHMENT TO TEST REPORT ## IEC 62133-2 ## (REPUBLIC OF KOREA) NATIONAL DIFFERENCES (SECONDARY CELLS AND BATTERIES CONTAINING ALKALINE OR OTHER NON-ACID ELECTROLYTES - SAFETY REQUIREMENTS FOR PORTABLE SEALED SECONDARY LITHIUM CELLS, AND FOR BATTERIES MADE FROM THEM, FOR USE IN PORTABLE APPLICATIONS - PART 2: LITHIUM SYSTEMS) Differences according to...... National standard KC62133-2(2020-07) TRF template used: IECEE OD-2020-F3, Ed. 1.1 Attachment Form No...... KR_ND_IEC62133_2A Attachment Originator: KTR Master Attachment Dated 2020-09-25 Copyright © 2020 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), Geneva, Switzerland. All rights reserved. | | National Differences | Р |
-------|--------------------------|---| | 7.3.6 | Over-charging of battery | Р | | IEC 62133-2 | | | | | |-------------|--------------------|--|-----------------|---------| | Clause | Requirement + Test | | Result - Remark | Verdict | | | IEC62133_2A ATTACHME | NT | | |---|--|--------------------------------|---------| | Clause | Requirement + Test | Result - Remark | Verdict | | (Revision) | b) Test The test shall be carried out in an ambient temperature of 20 °C ± 5 °C. Each test battery shall be discharged at a constant current of 0,2 lt A, to a final discharge voltage specified by the manufacturer. Sample batteries shall then be charged at a constant current of 2,0 lt A, using a supply voltage which is: • 1,4 times the upper limit charging voltage presented in Table A.1 (but not to exceed 6,0 V) for single cell/cell block batteries or • 1,2 times the upper limit charging voltage presented in Table A.1 per cell for series connected multi-cell batteries, and • sufficient to maintain a current of 2,0 lt A throughout the duration of the test or until the supply voltage is reached. • In case the charging voltage specified by the manufacturer is higher than the overcharge test voltage, the maximum charging voltage specified by manufacturer should be applied with 2.0 ltA, (e.g., quick charging power bank, etc.) | See the main report 7.3.6 Test | P | | | [Replace to the following statement] c) Acceptance criteria | | | | | Overcharging exceeding to the limits specified by the manufacturer should not result in fire or explosion. | | Р | | Annex G Definition for shape and materials of outer case for cell | | | _ | | | IEC 62133-2 | | | | | |--------|-------------|--------------------|--|-----------------|---------| | Clause | e R | Requirement + Test | | Result - Remark | Verdict | | | IEC62133_2A ATTACHM | ENT | | |------------|---|--|---------| | Clause | Requirement + Test | Result - Remark | Verdict | | (Addition) | G.1 General Annex G provides definitions for shape and materials of outer case for cell G.2 Shape of outer case for cell G.2 Shape of outer case for cell G.2 Shape of outer case for cell Cell with a cylindrical shape in which the overall height is equal to or greater than diameter. G.2.2 Prismatic cell Cell having the shape of a parallelepiped whose faces are rectangular G.3 Materials of outer case for cell G.3.1 Soft case Non-metallic outer case or container for cell G.3.2 Hard case Metallic outer case or container for cell. | (Shape of outer cases) ☑ Cylindrical ☐ Prismatic (Materials of outer cases) ☑ Hard ☐ Soft | | | Annex H | Calculation method of the volumetric energy density for cell | | | | (Addition) | Annex H provide a calculation method of the volumetric energy density for cell in use of smart phone, tablet, notebook. H.1 General Unless otherwise stated in the Annex E, the dimensions for calculation are based on these for cell before shipment and the volumetric energy density shall be calculated with a maximum values specified by manufacturer. If the specification for cell can't be provided a dimension for calculation, the manufacturer's other documentation shall be provided to demonstrate compliance for its calculation. | INR21700-2500mAh:
344,2Wh / L
INR21700-3000mAh:
413,1Wh / L
INR21700-3500mAh:
482,0Wh / L
INR21700-4000mAh:
550,8Wh / L
INR21700-5000mAh:
688,5Wh / L | _ | | IEC 62133-2 | | | | | |-------------|--------------------|--|-----------------|---------| | Clause | Requirement + Test | | Result - Remark | Verdict | ## **Attachment 2: Photo Documentation** Figure 1 Cell view(INR21700-2500mAh) Figure 2 Cell view(INR21700-3000mAh) Figure 3 Cell view(INR21700-3500mAh) Figure 4 Cell view(INR21700-4000mAh) Page 39 of 39 Report No.: 6168705.50 Figure 5 Cell view(INR21700-5000mAh) -- End of Report --