

TEST REPORT

Report No. WTF22F08166409A1F

Applicant.....: Mid Ocean Brands B.V.

Wan, Kowloon, Hong Kong

Manufacturer: 100381

Sample Name Picnic bag

Sample Model : AR1470

Test Requested: In accordance with Regulation (EU) No 10/2011 with

amendments, Council of Europe Resolution CM/Res(2013)9, Council of Europe Resolution

AP(2002)1 and Regulation (EC) No 1935/2004.

Test Conclusion: Pass (Please refer to next pages for details)

Date of Receipt sample 2022-08-16 & 2022-09-13

Date of Issue..... : 2022-09-22

Test Result..... : Refer to next page (s)

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Signed for and on behalf of Waltek Testing Group (Foshan) Co., Ltd.

Jessise Liu

Jessise.Liu

Test Results:

1. Overall Migration Test

at at		R. Carlot	esult (mg/dm	12. M.	Limit	
Food Simulant Test Conditio	Test Condition	114	No.1	LOQ		
	TEX WILLEY WILLE	1 st Migration	2 nd Migration	3 rd Migration	(mg/dm ²)	(mg/dm ²)
3% Acetic Acid	40°C for 4 hours	ND	ND	ND	3 30	10
10% Ethanol	40°C for 4 hours	ND	ND N	ND	3	10
95% Ethanol	40°C for 4 hours	ND	ND S	ND	Life 3 Life .	1000
Isooctane	40°C for 1 hour	ND	ND	ND	3.0	10

Food Simulant Test Condition	MALL WALL	R	esult (mg/dm	SLIEK MIT	Limit	
	Test Condition	LIFE WALTE	No.2	LOQ		
	with with w	1 st Migration	2 nd Migration	3 rd Migration	(mg/dm ²)	(mg/dm ²)
3% Acetic Acid	40°C for 4 hours	ND	ND ND	ND	3	10
10% Ethanol	40°C for 4 hours	ND	ND	ND	3	10
95% Ethanol	40°C for 4 hours	ND AT	ND	ND	3	10
Isooctane	40°C for 1 hour	ND ND	ND	ND	ant 3 ant	10

Food Simulant Test Con	at alt of	* CITTER	esult (mg/dm	VII. MUL	en in		
	Test Condition		No.3			Limit	
UTER MUTER AU	EX WALTEX WALTER	1 st Migration	2 nd Migration	3 rd Migration	(mg/dm ²)	(mg/dm ²)	
3% Acetic Acid	40°C for 4 hours	ND	ND	ND	3	10	
10% Ethanol	40°C for 4 hours	ND ND	ND	ND	3 1/1	10	
95% Ethanol	40°C for 4 hours	ND	ND	ND	JE 3 JE	10	
Isooctane	40°C for 1 hour	ND	ND	ND	3	10.0	

the Mulita Mulita	Mer Mer M	R	esult (mg/dm	n ²)		MULLE MULL	
Food Simulant	Test Condition			LOQ	Limit		
	TEX WALTEX WALTER	1 st Migration	2 nd Migration	3 rd Migration	(mg/dm ²)	(mg/dm ²)	
3% Acetic Acid	40°C for 4 hours	ND	ND	ND	3 411	10	
10% Ethanol	40°C for 4 hours	ND	ND	ND	MITE 3 MITE	w 10 w	
95% Ethanol	40°C for 4 hours	ND	ND	ND	3	Je 10 Je	
Isooctane	40°C for 1 hour	ND	ND	ND	3	10	

- 1. Test method: With reference to BS EN 1186-1: 2002, BS EN 1186-3: 2002, BS EN 1186-9: 2002 and BS EN 1186-14: 2002.
- 2. "mg/dm2" = milligram per square decimetre
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752, (EU)2019/37 and (EU) 2020/1245.
- 7. Test conditions were specified by the customer

2. Specific Migration of heavy metal

	70.	Result(mg/kg)	TEK STEK	INLIER WALTER	MULL MULL	
Test Items	nlier while	No.1		LOQ (mg/kg)	Limit (mg/kg)	
unti un colling un v	1 st Migration	2 nd Migration	3 rd Migration	- 29 & (g/n.g/		
Specific migration of Nickel	ND	ND ND	ND	0.01	0.02	
Specific migration of Aluminium	ND W	ND	ND	0.1	t millt in	
Specific migration of Barium	ND	ND	ND	0.1	1 1	
Specific migration of Cobalt	ND	ND	ND	0.01	0.05	
Specific migration of Copper	ND	ND	ND	0.1	JEK 5 JE	
Specific migration of Iron	ND	ND	ND	0.1	48	
Specific migration of Lithium	ND	ND	ND ND	0.01	0.6	
Specific migration of Manganese	ND	ND	ND (0.01	0.6	
Specific migration of Zinc	ND	ND	ND	0.1	5 (1)	
Specific migration of Antimony	ND -	ND	ND	0.01	0.04	
Specific migration of Arsenic	ND	ND	ND	0.01	Not detected	
Specific migration of Cadmium	ND	ND	ND	0.002	Not detected	
Specific migration of Chromium	ND	ND	ND	0.01	Not detected	
Specific migration of Mercury	ND	ND	ND ND	0.01	Not detected	
Specific migration of Lead	ND	ND	ND	0.01	Not detected	
Specific migration of Europeum	ND ND	ND ND	ND V	0.02	1 7h	
Specific migration of Gadolinium	ND	ND O	ND	0.02	Sum<0.05	
Specific migration of Lanthanum	an ND	ND	ND	0.02		
Specific migration of Terbium	ND	ND	ND	0.02		

	20, 20	Result(mg/kg	JEK JEK	WITE WALTER	MULLE MULL	
Test Items	ALTER WALTE	No.2	10	LOQ (mg/kg)	Limit (mg/kg)	
MULT MESSION WITH A	1 st Migration	2 nd Migration	3 rd Migration		INT WILL	
Specific migration of Nickel	ND	ND ND	ND	0.01	0.02	
Specific migration of Aluminium	ND W	ND	ND	0.1	t niift uni	
Specific migration of Barium	ND	ND	ND	0.1	11	
Specific migration of Cobalt	ND	ND	ND	0.01	0.05	
Specific migration of Copper	ND	ND	ND	0.1	5	
Specific migration of Iron	ND	ND ND	ND	0.1	48	
Specific migration of Lithium	ND	ND	ND ND	0.01	0.6	
Specific migration of Manganese	ND	ND	ND /	0.01	0.6	
Specific migration of Zinc	ND	ND	ND	0.1	5 5	
Specific migration of Antimony	ND +	ND	ND	0.01	0.04	
Specific migration of Arsenic	ND	ND	ND	0.01	Not detected	
Specific migration of Cadmium	ND	ND	ND	0.002	Not detected	
Specific migration of Chromium	ND	ND	ND ND	0.01	Not detected	
Specific migration of Mercury	ND	ND	ND OF	0.01	Not detected	
Specific migration of Lead	ND	ND	ND	0.01	Not detected	
Specific migration of Europeum	ND OF	nt ND mi	ND	0.02	1 X	
Specific migration of Gadolinium	ND	ND O	ND	0.02	Sum<0.05	
Specific migration of Lanthanum	ND	ND	ND	0.02		
Specific migration of Terbium	ND	ND	ND	0.02	The The	

	70, 7,	Result(mg/kg)	TEK LIEK	WITER WILLE	WALTE WALL	
Test Items	ALTER WALTE	No.3	24	LOQ (mg/kg)	Limit (mg/kg)	
MULT MESSION WITH A	1 st Migration	2 nd Migration	3 rd Migration		ner into	
Specific migration of Nickel	ND	ND ND	ND	0.01	0.02	
Specific migration of Aluminium	ND	ND	ND	0.1	* nitit uni	
Specific migration of Barium	ND	ND	ND	0.1	11 11	
Specific migration of Cobalt	ND	ND	ND	0.01	0.05	
Specific migration of Copper	ND	ND	ND	0.1	5.5	
Specific migration of Iron	ND	ND	ND	0.1	48	
Specific migration of Lithium	ND	ND	ND ND	0.01	0.6	
Specific migration of Manganese	ND	ND	ND (0.01	0.6	
Specific migration of Zinc	ND	ND	ND	0.1	10 5 St	
Specific migration of Antimony	ND -	ND	ND	0.01	0.04	
Specific migration of Arsenic	ND	ND	ND	0.01	Not detected	
Specific migration of Cadmium	ND	ND	ND	0.002	Not detected	
Specific migration of Chromium	ND	ND	ND	0.01	Not detected	
Specific migration of Mercury	ND	ND	ND OF	0.01	Not detected	
Specific migration of Lead	ND	ND	ND	0.01	Not detected	
Specific migration of Europeum	ND OF	ND NO	ND	0.02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Specific migration of Gadolinium	ND	ND A	ND	0.02	Sum<0.05	
Specific migration of Lanthanum	ND	ND	ND	0.02		
Specific migration of Terbium	ND	ND	ND	0.02		

	20, 20,	Result(mg/kg	TEK TEK	WITER WILLER	MULLE MULL	
Test Items	ALTER WALTE	No.4	24	LOQ (mg/kg)	Limit (mg/kg)	
while the lift of	1 st Migration	2 nd Migration	3 rd Migration	_ Log (mg/kg)		
Specific migration of Nickel	ND	ND ND	ND	0.01	0.02	
Specific migration of Aluminium	ND	ND	ND	0.1	t milit mi	
Specific migration of Barium	ND	ND	ND	0.1	1	
Specific migration of Cobalt	ND	ND	ND	0.01	0.05	
Specific migration of Copper	ND	ND	ND	0.1	5.7	
Specific migration of Iron	ND	ND ND	ND	0.1	48	
Specific migration of Lithium	ND	ND	ND	0.01	0.6	
Specific migration of Manganese	ND	ND	ND	0.01	0.6	
Specific migration of Zinc	ND ND	ND	ND	0.1	1 5 A	
Specific migration of Antimony	ND A	ND	ND	0.01	0.04	
Specific migration of Arsenic	ND	ND	ND	0.01	Not detected	
Specific migration of Cadmium	ND	ND	ND	0.002	Not detected	
Specific migration of Chromium	ND	ND	ND	0.01	Not detected	
Specific migration of Mercury	ND	ND	ND (*	0.01	Not detected	
Specific migration of Lead	ND	ND	ND	0.01	Not detected	
Specific migration of Europeum	ND OF	nt ND mi	ND	0.02	1 x	
Specific migration of Gadolinium	ND	ND O	ND	0.02	Sum<0.05	
Specific migration of Lanthanum	ND ND	ND	ND	0.02		
Specific migration of Terbium	ND	ND	ND	0.02		

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 40°C for 4 hours, analysis was performed by ICP-MS.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.

3. Specific Migration of Primary Aromatic Amines

The man man and an	70, 70,	Result (mg/kg)	TEK OLIEK OF	LIER WALTER	MULTER WALLE
Test Item	White whit	No.1	et let a	LOQ (mg/kg)	Limit (mg/kg)
A CH THE THE	1 st Migration	2 nd Migration	3 rd Migration	(3 3)	* 74
Migration of Primary aromatic amines	ND	ND ND	ND	0.002	<0.01mg/kg

The state of	EK JEK J	Result (mg/kg)	Vr. Mus	70 Th		
Test Item	10, 10,	No.3	iek aliek ani	LOQ (mg/kg)	Limit (mg/kg)	
LIER OLIER WILER WHILE	1 st Migration	2 nd Migration	3 rd Migration		CIEK CLIEK	
Migration of Primary aromatic amines	ND ND	ND ND	ND ND	0.002	<0.01mg/kg	

et Tet Tet	OLIEK OD	TEK WALTER W	Result (mg/kg)	n, m		TEX STE
Test Item		the state of	No.4	LIE WALLE W	LOQ (mg/kg)	Limit (mg/kg)
isk white white whi	ie whi	1 st Migration	2 nd Migration	3 rd Migration		INLIER WALTER
Migration of Primary a amines	aromatic	ND	ND	ND	0.002	<0.01mg/kg

- 1. Test Method: With reference to § 64 LFGB L No. 00.00-6, analysis was performed by UV-visible Spectrometer.
- 2. Test Condition and simulant: 3% acetic acid at 40°C for 4 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.

4. Specific Migration of Primary Aromatic Amines (single substance)*

	20.	C AFF	Result(mg/kg		ir. Mur.	
Test Items	CAS No.	Mr.	No.1	, 4.	LOQ	Limit
white white the tree of	et mitet	1 st Migration	2 nd Migration	3 rd Migration	(mg/kg)	(mg/kg)
2-methoxyaniline	90-04-0	ND	ND	ND	0.002	ND
4,4'-Diaminobiphenyl	92-87-5	ND	ND	ND	0.002	ND
4,4'-Methylen-bis-(2-chloroaniline)	101-14-4	ND	ND	ND	0.002	ND
4,4'-Diaminodiphenylmethane	101-77-9	ND	ND	ND O	0.002	ND
4,4'-Oxydianiline	101-80-4	ND	ND	ND	0.002	ND
4-chloroaniline	106-47-8	ND	ND O	ND	0.002	ND
3,3'-Dimethoxybenzidine	119-90-4	ND ND	ND	ND	0.002	ND
3,3'-Dimethylbenzidine	119-93-7	ND S	ND	ND	0.002	ND
2-Methoxy-5-methylaniline	120-71-8	ND	ND	ND C	0.002	ND
2,4,5 – Trimethylaniline	137-17-7	ND	ND ND	ND	0.002	ND
4,4'-Thiodianiline	139-65-1	ND	√ND √	ND	0.002	ND
4-aminoazobenzene	60-09-3	ND	ND	ND	0.002	ND
2,4-diaminoanisol	615-05-4	ND	ND	ND OF	0.002	ND
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND ND	ND	ND	0.002	ND
2-Naphthylamine	91-59-8	ND	ND	ND +	0.002	ND
3,3'-Dichlorobenzidine	91-94-1	ND	ND of	ND	0.002	ND
4-Aminobiphenyl	92-67-1	ND	ND 0	ND	0.002	ND
2-methylaniline	95-53-4	ND ND	ND	ND	0.002	ND
4-chloro-o-Toluidine	95-69-2	ND S	ND	ND N	0.002	ND
2,4-Toluylendiamine	95-80-7	ND	ND	ND	0.002	ND
2,4-Aminoazotoluene	97-56-3	ND	ND M	ND	0.002	ND
2-Amino-4-nitrotoluene	99-55-8	ND	ND	ND	0.002	ND
2,4-Xylidin	95-68-1	ND	ND	ND	0.002	ND
2,6-Xylidin	87-62-7	ND	ND	ND	0.002	ND
1, 3 - phenylene diamine	108-45-2	ND	ND	ND	0.002	ND

E WILL MULL MULL MULL	24, 24	Result(mg/kg)		MITE N	The MULL	
Test Items	CAS No.	we.	No.3		LOQ	Limit
white was too the tree of	et antiet	1 st Migration	2 nd Migration	3 rd Migration	(mg/kg)	(mg/kg)
2-methoxyaniline	90-04-0	ND	ND	ND	0.002	ND
4,4'-Diaminobiphenyl	92-87-5	ND	ND	ND	0.002	ND
4,4'-Methylen-bis-(2-chloroaniline)	101-14-4	ND	ND	ND	0.002	ND
4,4'-Diaminodiphenylmethane	101-77-9	ND	ND	ND O	0.002	ND
4,4'-Oxydianiline	101-80-4	ND	ND	ND	0.002	ND
4-chloroaniline	106-47-8	ND	ND O	ND	0.002	ND
3,3'-Dimethoxybenzidine	119-90-4	ND	ND	ND	0.002	ND
3,3'-Dimethylbenzidine	119-93-7	ND	ND	ND	0.002	ND
2-Methoxy-5-methylaniline	120-71-8	ND	ND	ND O	0.002	ND
2,4,5 – Trimethylaniline	137-17-7	ND	ND ND	ND	0.002	ND
4,4'-Thiodianiline	139-65-1	ND	ND	ND	0.002	ND
4-aminoazobenzene	60-09-3	ND	ND	ND	0.002	ND
2,4-diaminoanisol	615-05-4	ND	ND	ND O	0.002	ND
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND ND	ND	ND	0.002	ND.
2-Naphthylamine	91-59-8	ND	ND	ND -	0.002	ND
3,3'-Dichlorobenzidine	91-94-1	ND	ND.	ND	0.002	ND
4-Aminobiphenyl	92-67-1	ND	ND 0	ND	0.002	ND
2-methylaniline	95-53-4	ND ND	ND	ND	0.002	ND
4-chloro-o-Toluidine	95-69-2	ND	ND	ND N	0.002	ND
2,4-Toluylendiamine	95-80-7	ND	ND	ND	0.002	ND
2,4-Aminoazotoluene	97-56-3	ND	ND M	ND	0.002	ND
2-Amino-4-nitrotoluene	99-55-8	ND	ND	ND	0.002	ND
2,4-Xylidin	95-68-1	ND	ND	ND	0.002	ND
2,6-Xylidin	87-62-7	ND	ND	ND	0.002	ND
1, 3 - phenylene diamine	108-45-2	ND	ND	ND	0.002	ND

	24 20	. Jet F	Result(mg/kg	g)		The Mul
Test Items	CAS No.	No.4		LOQ	Limit	
	CAS NO.	1 st Migration	2 nd Migration	3 rd Migration	(mg/kg)	(mg/kg)
2-methoxyaniline	90-04-0	ND	ND ND	ND	0.002	ND
4,4'-Diaminobiphenyl	92-87-5	ND	ND	ND	0.002	ND
4,4'-Methylen-bis-(2-chloroaniline)	101-14-4	ND (ND	ND	0.002	ND
4,4'-Diaminodiphenylmethane	101-77-9	ND	ND	ND	0.002	-ND
4,4'-Oxydianiline	101-80-4	ND	ND	ND	0.002	ND
4-chloroaniline	106-47-8	ND	ND	ND	0.002	- ND
3,3'-Dimethoxybenzidine	119-90-4	ND	ND	ND	0.002	ND
3,3'-Dimethylbenzidine	119-93-7	ND	ND	ND	0.002	ND
2-Methoxy-5-methylaniline	120-71-8	ND	ND	ND	0.002	ND
2,4,5 – Trimethylaniline	137-17-7	ND	ND	ND	0.002	ND
4,4'-Thiodianiline	139-65-1	- ND	ND	ND	0.002	ND
4-aminoazobenzene	60-09-3	ND	ND	ND	0.002	ND ND
2,4-diaminoanisol	615-05-4	ND	ND	ND	0.002	ND
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND	ND A	ND	0.002	ND
2-Naphthylamine	91-59-8	ND	ND	ND	0.002	ND
3,3'-Dichlorobenzidine	91-94-1	ND CO	ND	ND	0.002	ND
4-Aminobiphenyl	92-67-1	ND	ND	ND	0.002	ND
2-methylaniline	95-53-4	ND	ND	ND	0.002	ND
4-chloro-o-Toluidine	95-69-2	ND	ND	ND	0.002	ND
2,4-Toluylendiamine	95-80-7	ND	ND	ND	0.002	ND
2,4-Aminoazotoluene	97-56-3	ND	ND	ND	0.002	ND
2-Amino-4-nitrotoluene	99-55-8	ND O	ND	ND ND	0.002	ND
2,4-Xylidin	95-68-1	ND	ND	ND	0.002	ND
2,6-Xylidin	87-62-7	ND	ND	ND	0.002	ND
1, 3 - phenylene diamine	108-45-2	ND	ND	ND -	0.002	ND

- 1. Test Method: With reference to EN 13130-1:2004, analysis was performed by LC-MS-MS.
- 2. Test Condition and simulant: 3% acetic acid at 40°C for 4 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.
- 7. The testing item marked with '*' does not been accredited by CNAS.

5. Bisphenol A Content*

Tool from	LIEK N	Result	(mg/kg)	ALCO A	100 (mg/kg)	Limit (ma/ka)
Test Item	No.1	No.2	No.3	No.4	LOQ (mg/kg)	Limit (mg/kg)
Bisphenol A	ND	ND	ND	ND	0.1	Not Detected

- 1. Test Method: With reference to EPA3550C:2007, analysis was performed by GC-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from Law No 2012-1442.
- 6. The testing item marked with '*' does not been accredited by CNAS.

6. Council of Europe Resolution CM/Res(2013)9-Specific Migration of Heavy Metal

Test Items	1st+2nd Migration (mg/kg)	LOQ (mg/kg)	Limit (mg/kg)
restitems	No.5	LOQ (mg/kg)	Limit (mg/kg)
Aluminium (Al)	ND ND	0.2	35
Antimony (Sb)	IND W	0.02	0.28
Chromium (Cr)	0.06	0.04	1.75
Cobalt (Co)	ND	0.02	0.14
Copper (Cu)	nite on the ND to when all	0.2	28
Iron (Fe)	2.9	0.4	280
Manganese (Mn)	ND	0.2	12.6
Molybdenum (Mo)	at the ND with white	0.02	0.84
Nickel (Ni)	0.10	0.02	0.98
Silver (Ag)	ND U W	0.02	0.56
Tin (Sn)	ND -	0.2	700
Vanadium (V)	ND ND	0.01	0.07
Zinc (Zn)	ND NOT WELL WITH	0.2	35
Arsenic (As)	ND A	0.002	0.014
Barium (Ba)	ND ND	0.2	8.4
Beryllium (Be)	ND At The	0.01	0.07
Cadmium (Cd)	ND ND	0.002	0.035
Lead (Pb)	ND ND	0.01	0.07
Lithium (Li)	ND	0.01	0.336
Mercury (Hg)	THE MITTER WIND WITH WIND	0.002	0.021
Thallium (TI)	ND ND	0.0002	0.0007
Magnesium (Mg)	ND ND	0.2	LIEN LIEN
Titanium (Ti)	IN THE NOTE WITE IN	0.02	11. 25.

the transfer of	3rd Migration (mg/kg)	100 (m m/lsm)	Limit (mg/kg)
Test Items	No.5	LOQ (mg/kg)	Limit (mg/kg)
Aluminium (Al)	ND	0.1	5 (5
Antimony (Sb)	THE THE NO STREET WALL	0.01	0.04
Chromium (Cr)	ND	0.02	0.25
Cobalt (Co)	ND PLEASE	0.01	0.02
Copper (Cu)	L ND	0.1	W 3/4
Iron (Fe)	0.2	0.2	40
Manganese (Mn)	ND* ND* NO	0.1	1.8
Molybdenum (Mo)	ND	0.01	0.12
Nickel (Ni)	THE THE NO WELL WAS	0.01	0.14
Silver (Ag)	ND ND	0.01	0.08
Tin (Sn)	ND ND	0.1	100
Vanadium (V)	ND TO NO	0.005	0.01
Zinc (Zn)	ND	0.1	5
Arsenic (As)	ND ND	0.001	0.002
Barium (Ba)	ND THE CLE	0.1	1.2
Beryllium (Be)	ND	0.005	0.01
Cadmium (Cd)	ND COMMENT	0.001	0.005
Lead (Pb)	ND	0.005	0.01
Lithium (Li)	THE NO WELL WITH	0.005	0.048
Mercury (Hg)	ND ND	0.001	0.003
Thallium (TI)	ND	0.0001	0.0001
Magnesium (Mg)	L ND ND	J 0.1	711, 71,
Titanium (Ti)	ND ND	0.01	NITER MATERIAL

- 1. Test Method: With reference to BS EN 13130-1: 2004, analysis was performed by ICP-MS.
- 2. Test Condition and simulant: Sample(s) were migrated with 5g/L citric acid at 40°C for 4 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. "--" = Not regulated
- 7. The specification was quoted from Technical Guide on Metals and alloys used in food contact materials of Council of Europe Resolution CM/Res(2013)9.

Test Items	1st+2nd Migration (mg/kg)	LOQ (mg/kg)	Limit (mg/kg)
1 est items	No.6	LOQ (IIIg/kg)	Limit (mg/kg)
Aluminium (Al)	ND ND	0.2	35
Antimony (Sb)	ND W	0.02	0.28
Chromium (Cr)	H ND THE WILL	0.04	1.75
Cobalt (Co)	ND	0.02	0.14
Copper (Cu)	ND W	0.2	28
Iron (Fe)	ND ND	0.4	280
Manganese (Mn)	ND	0.2	12.6
Molybdenum (Mo)	ND ND	0.02	0.84
Nickel (Ni)	ND ND	0.02	0.98
Silver (Ag)	ND	0.02	0.56
Tin (Sn)	ND -	0.2	700
Vanadium (V)	ND ND	0.01	0.07
Zinc (Zn)	ND NOT NOT	0.2	35
Arsenic (As)	ND ND	0.002	0.014
Barium (Ba)	ND	0.2	8.4
Beryllium (Be)	ND TO THE	0.01	0.07
Cadmium (Cd)	ND	0.002	0.035
Lead (Pb)	ND ND	0.01	0.07
Lithium (Li)	ND	0.01	0.336
Mercury (Hg)	APP ND APP APP	0.002	0.021
Thallium (TI)	ND 10t 11th	0.0002	0.0007
Magnesium (Mg)	ND ND	0.2	LIET STEEL
Titanium (Ti)	ND Stranger	0.02	11. 11. 1

et of the mark of the	3rd Migration (mg/kg)	100 (m m/lsm)	Limpit (mag/log)	
Test Items	No.6	LOQ (mg/kg)	Limit (mg/kg)	
Aluminium (Al)	ner ND	0.1	5 5	
Antimony (Sb)	THE THE ND STREET WALL	0.01	0.04	
Chromium (Cr)	ND ND	0.02	0.25	
Cobalt (Co)	ND NLL WA	0.01	0.02	
Copper (Cu)	L ND A LITER	0.1	4	
Iron (Fe)	and and ND	0.2	40	
Manganese (Mn)	THE THE NOW WHITE WA	0.1	1.8	
Molybdenum (Mo)	ND ND	0.01	0.12	
Nickel (Ni)	THE WILLIAM NO WAY WAY	0.01	0.14	
Silver (Ag)	ND 18th CLITTER	0.01	0.08	
Tin (Sn)	which will ND	0.1	100	
Vanadium (V)	THE NOTE WATER	0.005	0.01	
Zinc (Zn)	ND ND	0.1	The soul	
Arsenic (As)	ND ND	0.001	0.002	
Barium (Ba)	ND IT IT	0.1	1.2	
Beryllium (Be)	ND	0.005	0.01	
Cadmium (Cd)	THE LIE NO. LIE WALLE	0.001	0.005	
Lead (Pb)	All ND	0.005	0.01	
Lithium (Li)	LITER ND WILL WI	0.005	0.048	
Mercury (Hg)	L ND- ITHE MI	0.001	0.003	
Thallium (TI)	ND W	0.0001	0.0001	
Magnesium (Mg)	L TEL TEND WITE WHITE	10.1 M	7/1, 7/1,	
Titanium (Ti)	ND L	0.01	NITER OFFE	

- 1. Test Method: With reference to BS EN 13130-1: 2004, analysis was performed by ICP-MS.
- 2. Test Condition and simulant: Sample(s) were migrated with artificial tap water at 40°C for 4 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. "--" = Not regulated
- 7. The specification was quoted from Technical Guide on Metals and alloys used in food contact materials of Council of Europe Resolution CM/Res(2013)9.

7. Specific Migration of Formaldehyde*

Test Item	Result (mg/kg)	100 (mg/kg)	Limit (mg/kg)
restrient	No.7	LOQ (mg/kg)	Limit (mg/kg)
Migration of Formaldehyde	ND O	in man y	15

Note:

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 40°C for 4 hours, analysis was performed by UV-visible Spectrometer.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from regulation (EU) No 10/2011.
- 6. The testing item marked with '*' does not been accredited by CNAS.

8. Pentachlorophenol (PCP) Content*

Total lane	Result (mg/kg)	100 (201/10)	Limit (may/lea)
Test Item	No.7	LOQ (mg/kg)	Limit (mg/kg)
Pentachlorophenol (PCP)	ND	0.10	0.15

- 1. Test method: With reference to LFGB § 64 BVL B 82.02.8-2001, analysis was performed by GC-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from Council of Europe Resolution AP(2002)1.
- 6. The testing item marked with '*' does not been accredited by CNAS.

Sample description:

No.1: White plastic (PS)

No.2: Transparent plastic (PS)

No.3: Black plastic (PP)

No.4: White plastic (PP)

No.5: Silvery metal (Stainless steel)

No.6: Silvery metal (Copper)

No.7: Wood

No.	graph of parts tested: Photo of testing part	Parts Description	Client Claimed Material
1,5		White plastic	Whitek
THE WALLE	1 2 3 4 5 6 7 8 9 10 11 12 13	Transparent plastic	TEX WHITEX WHITE
TE VIOLET	1 2 3 4 5 6 7 8 9 10 1	Black plastic	LIFE WHITE W

No.	Photo of testing part	Parts Description	Client Claimed Material
untitle untitle 4		White plastic	PP WALTER WALT WALTER W
5	5 1 5 5 7 5 0 10 1 RD H15 6 F 8 12 20 22 24 25 25 27 23 30 21 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	Silvery metal	Stainless steel
6 Martin		Silvery metal	TEE WALTER WALT WALTER WALTER WALTER WALTER WALTER WALTER WALTER WALTER WALTER
TER OUT TER TER TER TER TER TER TER T	15 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 22 5 25 22 22	Wood	Wood

Remarks:

- 1. The results shown in this test report refer only to the sample(s) tested;
- 2. This test report cannot be reproduced, except in full, without prior written permission of the company;
- 3. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver;
- 4. The Applicant name and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which Waltek hasn't verified;
- 5. If the report is not stamped with the accreditation recognized seal, it will only be used for scientific research, education, and internal quality control activities, and is not used for the purpose of issuing supporting data to the society.

===== End of Report ======

