

TEST REPORT

Report No. : WTF22F03039697F

Applicant..... : Mid Ocean Brands B.V.

Wan, Kowloon, Hong Kong

Manufacturer: 114276

Sample Name : Double wall bottle, RPET bottle

Sample Model : MO9539, MO9939, MO9940

Test Requested: In accordance with Regulation (EU) No 10/2011 with

amendments, Council of Europe Resolution

CM/Res(2013)9 and Regulation (EC) No 1935/2004.

Test Conclusion: Pass (Please refer to next pages for details)

Date of Receipt sample : 2022-03-10

Testing period 2022-03-10 to 2022-03-19

Date of Issue 2022-03-21

Test Result : Refer to next page (s)

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City,
Chencun, Shunde District, Foshan, Guangdong, China
Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Signed for and on behalf of Waltek Testing Group (Foshan) Co., Ltd.

Jessise Liu

Jessise.Liu

Test Results:

1. Overall Migration Test

						7,000 (311)			
	Food Simulant	TEX TEX INT	EX MITER R	esult (mg/dm	2) 1	10 m	ar at		
3		Test Condition		1 st Migration	UNLIFE WA	LOQ (mg/dm²)	Limit (mg/dm ²)		
		TER WALTER WALTER	No.1	No.2	No.3		CAL CALLERY		
	3% Acetic Acid	70°C for 2 hours	ND N	ND	ND	3			
	10% Ethanol	70°C for 2 hours	ND	ND	ND	anti 3 mil	mr mr		

Any Any	ar to the	- Re	sult (mg/dr	m ²)	TIL MULL	ne m
Food Simulant	Test Condition	2	2 nd Migratio	n tiek ti	LOQ (mg/dm²)	Limit (mg/dm²)
TEK LIEK AL	EX WITEK WALTER	No.1	No.2	No.3		et stit
3% Acetic Acid	70°C for 2 hours	ND_	ND	ND	an 3 an	70 - 70
10% Ethanol	70°C for 2 hours	ND	ND	ND T	25 CE 3 25 CE	White-Mili

MULL MULL	ing the	Re	sult (mg/dn	n ²)	TEK WITE W	Will Marie
Food Simulant	Test Condition	711, 3	B rd Migration	LOQ (mg/dm²)	Limit (mg/dm²)	
in in		No.1	No.2	No.3		
3% Acetic Acid	70°C for 2 hours	ND	ND	ND	and 3 and	10
10% Ethanol	70°C for 2 hours	ND	ND	ND -	3 3	10

- 1. Test method: With reference to BS EN 1186-1: 2002 and BS EN 1186-3: 2002
- 2. "mg/dm²" = milligram per square decimetre
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752, (EU)2019/37 and (EU) 2020/1245.

Fand Cinculant	Total Complition	Result (mg/kg)	1.00((1)	Line it (on a (lean)	
Food Simulant	Test Condition -	No.4	No.6	LOQ(mg/kg)	Limit (mg/kg)	
3% Acetic Acid	70°C for 2 hours	ND	an ND	20	60	
10% Ethanol	70°C for 2 hours	ND	ND TO	20	60	

- 1. Test method: With reference to BS EN 1186-1: 2002 and BS EN 1186-3: 2002
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from Council of Europe Resolution AP (2004)5.

2. Specific Migration of heavy metal

Murit mur. mur. mur.	20, 7,	Result(mg/kg) TEX STE	INLIER WALTER	Limit (mg/kg)	
Test Items	ALTER MALTE	1 st Migration	10	LOQ (mg/kg)		
mer mer me me	No.1	No.2	No.3	WILLE MULLE	With Myr	
Specific migration of Nickel	ND	ND	ND	0.01	TER WELL	
Specific migration of Aluminium	ND	ND	ND ND	0.1	t 3	
Specific migration of Barium	ND	ND	ND	0.1	ang - an	
Specific migration of Cobalt	ND ND	ND	ND -	0.01	MITER NAITE	
Specific migration of Copper	S ND S	ND N	ND	0.1	At - Let	
Specific migration of Iron	ND	ND S	ND	0.1	T. W.	
Specific migration of Lithium	ND	ND	ND	0.01	EK WITER W	
Specific migration of Manganese	ND	ND	ND	0.01	- 15 S	
Specific migration of Zinc	ND	ND	ND	0.10	mr - mr	
Specific migration of Antimony	ND	ND	ND -	0.01	INLIER WILLE	
Specific migration of Arsenic	ND	ND	ND	0.01	Not detected	
Specific migration of Cadmium	ND	MD C	ND	0.002	Not detected	
Specific migration of Chromium	ND	ND -	ND	0.01	Not detected	
Specific migration of Mercury	ND O	ND	ND	0.01	Not detected	
Specific migration of Lead	ND	ND	ND	0.01	Not detected	
Specific migration of Europeum	ND	ND	ND	0.02	Will Muliter	
Specific migration of Gadolinium	ND	ND	ND	0.02	EK STEK	
Specific migration of Lanthanum	ND	ND	SIL ND SIL	0.02	201- 20	
Specific migration of Terbium	ND	ND +	∠ ND ✓	0.02	WALTE WAL	

its with must me my	211 20	Result(mg/kg)			White white
Test Items	ALTER WALT	2 nd Migration	71	LOQ (mg/kg)	Limit (mg/kg)
mr. mr. mr. 2n. 2	No.1	No.2	No.3	WILLE MULLE	With Mur
Specific migration of Nickel	ND	ND	ND	0.01	TEX WELEK
Specific migration of Aluminium	ND	ND	MD M	0.1	t - 75-
Specific migration of Barium	ND	ND	ND S	0.1	MUL MUL
Specific migration of Cobalt	ND NO	ND	ND	0.01	MITE - WALTER
Specific migration of Copper	ND N	ND ND	ND	0.1	10th 10th
Specific migration of Iron	ND	ND (ND	0.1	r mr
Specific migration of Lithium	ND	ND	ND	0.01	EX WITER ON
Specific migration of Manganese	ND	ND	ND	0.01	- A# 5
Specific migration of Zinc	ND	ND	ND	0.1	Mr Mr.
Specific migration of Antimony	ND	ND	ND ND	0.01	INLIER WILLES
Specific migration of Arsenic	ND	ND	ND	0.01	Not detected
Specific migration of Cadmium	ND	ND C	ND	0.002	Not detected
Specific migration of Chromium	ND	ND -	ND	0.01	Not detected
Specific migration of Mercury	ND M	ND	ND	0.01	Not detected
Specific migration of Lead	ND C	ND	ND	0.01	Not detected
Specific migration of Europeum	ND	ND	ND	0.02	ALTE WALLE
Specific migration of Gadolinium	ND	ND	ND	0.02	EK STEK S
Specific migration of Lanthanum	ND	ND	SUL ND SUL	0.02	20-20
Specific migration of Terbium	ND	→ ND	∠ ND ✓	0.02	WALTE WAL

E WHITE MILL MILL MILL	74. 24.	Result(mg/kg) TEX JE	NITEK WAITE	Limit (mg/kg)	
Test Items	NITER MALTE	3 rd Migration	L 70	LOQ (mg/kg)		
mer, mer, and and	No.1	No.1 No.2 No.3		MALTE WALTE	With Myr	
Specific migration of Nickel	ND	ND	ND	0.01	0.02	
Specific migration of Aluminium	ND	ND	ND ND	0.1	1,	
Specific migration of Barium	ND	ND	ND	0.1	with the	
Specific migration of Cobalt	ND NO	ND	ND	0.01	0.05	
Specific migration of Copper	ND TO	ND ND	ND	0.1	5	
Specific migration of Iron	ND	ND (ND	0.1	48	
Specific migration of Lithium	ND	ND	ND	0.01	0.6	
Specific migration of Manganese	ND	ND	ND	0.01	0.6	
Specific migration of Zinc	ND	ND	ND	0.10	5	
Specific migration of Antimony	ND	ND	ND -	0.01	0.04	
Specific migration of Arsenic	ND	ND	ND	0.01	Not detected	
Specific migration of Cadmium	ND	ND O	ND	0.002	Not detected	
Specific migration of Chromium	ND	ND	ND	0.01	Not detected	
Specific migration of Mercury	ND N	ND	ND	0.01	Not detected	
Specific migration of Lead	ND (ND	ND	0.01	Not detected	
Specific migration of Europeum	ND	ND	ND	0.02	NITE WALLE	
Specific migration of Gadolinium	ND	ND	ND	0.02	of Solo	
Specific migration of Lanthanum	ND	ND	so ND so	0.02	Sum<0.05	
Specific migration of Terbium	ND	ND ND	∠ ND ✓	0.02	WALTER WAL	

Note:

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 70°C for 2 hours, analysis was performed by ICP-OES and ICP-MS.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.

3. Specific Migration of Primary Aromatic Amines

Took Home Will Mile	WALTER ON	Result (mg/kg)	The state of the s	100 (mg/kg)	Limit (ma/ka)
Test Item	No.1	No.2	No.3	LOQ (mg/kg)	Limit (mg/kg)
Migration of Primary aromatic amines	ND	ND	ND	0.002	<0.01mg/kg

- 1. Test Method: With reference to § 64 LFGB L No. 00.00-6, analysis was performed by UV-visible Spectrometer.
- 2. Test Condition and simulant: 3% acetic acid at 70°C for 2 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.

4. Specific Migration of Primary Aromatic Amines (single substance)*

	70, 70	R	esult(mg/k	g) 🔭 🔣	IER WILLES	Limit (mg/kg)
Test Items	CAS No.	m	1 st Migratio	n	LOQ (mg/kg)	
	at at	No.1	No.2 No.3		(mg/kg)	(mg/kg)
2-methoxyaniline	90-04-0	ND	ND	ND	0.002	it with
4,4'-Diaminobiphenyl	92-87-5	ND	ND	ND	0.002	
4,4'-Methylen-bis-(2-chloroaniline)	101-14-4	ND	ND	ND	0.002	WILLE A
4,4'-Diaminodiphenylmethane	101-77-9	ND	ND	ND	0.002	
4,4'-Oxydianiline	101-80-4	ND	ND	ND	0.002	iver our
4-chloroaniline	106-47-8	ND	ND	ND	0.002	SER STE
3,3'-Dimethoxybenzidine	119-90-4	ND	ND	ND	0.002	-20,
3,3'-Dimethylbenzidine	119-93-7	ND	ND	ND	0.002	MILLE .
2-Methoxy-5-methylaniline	120-71-8	ND	ND	ND	0.002	
2,4,5 – Trimethylaniline	137-17-7	ND ND	ND	ND	0.002	arry ar
4,4'-Thiodianiline	139-65-1	ND	ND	ND	0.002	JE# JT
4-aminoazobenzene	60-09-3	ND	ND N	ND	0.002	- 70,
2,4-diaminoanisol	615-05-4	ND	ND	ND	0.002	file on the first
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND	ND	ND	0.002	The state of
2-Naphthylamine	91-59-8	ND	ND	ND N	0.002	
3,3'-Dichlorobenzidine	91-94-1	ND	ND	ND	0.002	المارية على
4-Aminobiphenyl	92-67-1	ND	ND	ND	0.002	AP - A
2-methylaniline	95-53-4	ND	ND	ND	0.002	7/1
4-chloro-o-Toluidine	95-69-2	ND	ND	ND	0.002	1 (C) (S) (E)
2,4-Toluylendiamine	95-80-7	ND	ND	ND	0.002	- J.
2,4-Aminoazotoluene	97-56-3	ND	ND	ND	0.002	Writer W
2-Amino-4-nitrotoluene	99-55-8	ND	ND	ND	0.002	18t - 1
2,4-Xylidin	95-68-1	ND	ND	ND	0.002	12 Tay
2,6-Xylidin	87-62-7	ND	ND	ND	0.002	EF REIE
1, 3 - phenylene diamine	108-45-2	ND	ND	ND	0.002	

E WHILL MUSE MUSE MUSE	711. 21.	R	esult(mg/k	g)	IER WILTER	Limit (mg/kg)
Test Items	CAS No.	We 2	2 nd Migratio	n	LOQ (mg/kg)	
	at at	No.1	No.2	No.3	(mg/kg)	
2-methoxyaniline	90-04-0	ND	ND	ND	0.002	ik Tiek
4,4'-Diaminobiphenyl	92-87-5	ND	ND	ND	0.002	
4,4'-Methylen-bis-(2-chloroaniline)	101-14-4	ND	ND	ND	0.002	WILLE A
4,4'-Diaminodiphenylmethane	101-77-9	ND	ND	ND	0.002	
4,4'-Oxydianiline	101-80-4	ND	ND	ND	0.002	iner and
4-chloroaniline	106-47-8	ND	ND	ND	0.002	SEP JUSE
3,3'-Dimethoxybenzidine	119-90-4	ND	ND	ND	0.002	-24
3,3'-Dimethylbenzidine	119-93-7	ND	ND N	ND	0.002	JALIE .
2-Methoxy-5-methylaniline	120-71-8	ND	ND	ND	0.002	
2,4,5 – Trimethylaniline	137-17-7	ND ND	ND	ND	0.002	aver - an
4,4'-Thiodianiline	139-65-1	ND	ND	ND	0.002	JEK J
4-aminoazobenzene	60-09-3	ND	ND	ND	0.002	7,
2,4-diaminoanisol	615-05-4	ND	ND	ND	0.002	NATE OF STREET
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND	ND	ND	0.002	WILLER W
2-Naphthylamine	91-59-8	ND	ND	ND ND	0.002	
3,3'-Dichlorobenzidine	91-94-1	ND	ND	ND	0.002	Write -OV
4-Aminobiphenyl	92-67-1	ND	ND	ND	0.002	18t - 18
2-methylaniline	95-53-4	ND	ND	ND	0.002	11/2
4-chloro-o-Toluidine	95-69-2	ND	ND	ND	0.002	Jr 10 152 EV
2,4-Toluylendiamine	95-80-7	ND	ND	ND	0.002	
2,4-Aminoazotoluene	97-56-3	ND	ND	ND	0.002	Mritis M
2-Amino-4-nitrotoluene	99-55-8	ND	ND	ND	0.002	18t 1
2,4-Xylidin	95-68-1	ND	ND	ND	0.002	12 Tay
2,6-Xylidin	87-62-7	ND	ND	ND	0.002	EF RETER
1, 3 - phenylene diamine	108-45-2	ND	ND	ND	0.002	

	20, 20	R	esult(mg/k	(g)	100	
Test Items	CAS No.	3000	3 rd Migratio	n	LOQ (mg/kg)	Limit (mg/kg)
	et et	No.1	No.2	No.3	(mg/kg)	
2-methoxyaniline	90-04-0	ND	ND	ND	0.002	ND
4,4'-Diaminobiphenyl	92-87-5	ND	ND	ND	0.002	ND
4,4'-Methylen-bis-(2-chloroaniline)	101-14-4	ND	ND -	ND	0.002	ND
4,4'-Diaminodiphenylmethane	101-77-9	ND	ND	ND	0.002	ND
4,4'-Oxydianiline	101-80-4	ND	ND	ND	0.002	ND
4-chloroaniline	106-47-8	ND	ND	ND	0.002	ND
3,3'-Dimethoxybenzidine	119-90-4	ND	ND	ND	0.002	ND
3,3'-Dimethylbenzidine	119-93-7	ND	ND.	ND	0.002	ND
2-Methoxy-5-methylaniline	120-71-8	ND	ND	ND	0.002	ND
2,4,5 – Trimethylaniline	137-17-7	ND	ND	ND	0.002	MD ND
4,4'-Thiodianiline	139-65-1	ND	ND	ND	0.002	ND (
4-aminoazobenzene	60-09-3	ND	ND N	ND	0.002	ND
2,4-diaminoanisol	615-05-4	ND	ND	ND	0.002	ND
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND	ND	ND	0.002	ND
2-Naphthylamine	91-59-8	ND	ND	ND ND	0.002	ND
3,3'-Dichlorobenzidine	91-94-1	- ND	ND	ND	0.002	ND
4-Aminobiphenyl	92-67-1	ND	ND	ND	0.002	ND.
2-methylaniline	95-53-4	ND	ND	ND	0.002	ND
4-chloro-o-Toluidine	95-69-2	ND	ND	ND	0.002	ND
2,4-Toluylendiamine	95-80-7	ND	ND	ND	0.002	ND
2,4-Aminoazotoluene	97-56-3	ND	ND	ND	0.002	ND.
2-Amino-4-nitrotoluene	99-55-8	ND	ND	ND	0.002	ND
2,4-Xylidin	95-68-1	ND	ND	ND	0.002	ND
2,6-Xylidin	87-62-7	ND	ND	ND	0.002	ND
1, 3 - phenylene diamine	108-45-2	ND	ND	ND	0.002	ND

Note:

- 1. Test Method: With reference to EN 13130-1:2004, analysis was performed by LC-MS-MS.
- 2. Test Condition and simulant: 3% acetic acid at 70°C for 2 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.
- 7. The testing item marked with '*' does not been accredited by CNAS.

5. Bisphenol A Content*

Tool Hom	Me	Re	sult (mg/	kg)	TER MIT	100 (mg/kg)	Limit (mg/kg)	
Test Item	No.1	No.2	No.3	No.4	No.6	LOQ (mg/kg)	Limit (mg/kg)	
Bisphenol A	ND	ND	ND	ND	ND	0.1	Not Detected	

- 1. Test Method: With reference to EPA3550C:2007, analysis was performed by GC-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from Law No 2012-1442.
- 6. The testing item marked with '*' does not been accredited by CNAS.

6. Council of Europe Resolution CM/Res(2013)9-Specific Migration of Heavy Metal

Test Items	1st+2nd Migration (mg/kg) No.5	LOQ (mg/kg)	Limit (mg/kg)
Aluminium (Al)	ND	0.2	35
Antimony (Sb)	ND	0.02	0.28
Chromium (Cr)	# ND TO	0.04	1.75
Cobalt (Co)	ND	0.02	0.14
Copper (Cu)	ALL ND MALL W	0.2	28
Iron (Fe)	ND	0.4	280
Manganese (Mn)	ND ND	0.2	12.6
Molybdenum (Mo)	at the ND of mile	0.02	0.84
Nickel (Ni)	ND ND	0.02	0.98
Silver (Ag)	ND ND	0.02	0.56
Tin (Sn)	ND	0.2	700
Vanadium (V)	ND VI	0.01	0.07
Zinc (Zn)	ND A ND	0.2	35
Arsenic (As)	ND	0.002	0.014
Barium (Ba)	ND ND	0.2	8.4
Beryllium (Be)	ND	0.01	0.07
Cadmium (Cd)	I ND W	0.002	0.035
Lead (Pb)	L ND NOTE THE	0.01	0.07
Lithium (Li)	ND	0.01	0.336
Mercury (Hg)	ND CONTRACTOR	0.002	0.021
Thallium (TI)	ND	0.0002	0.0007
Magnesium (Mg)	ND ND	0.2	EK TEK - TEK
Titanium (Ti)	AL ND COM	0.02	10. 10.

et Formalis st	3rd Migration (mg/kg)	gration (mg/kg)	
Test Items	No.5	LOQ (mg/kg)	Limit (mg/kg)
Aluminium (Al)	WELL MD ND	0.1	5 5
Antimony (Sb)	THE THE ND THE MITTER	0.01	0.04
Chromium (Cr)	ND	0.02	0.25
Cobalt (Co)	A MILE ND WALL	0.01	0.02
Copper (Cu)	ND	0.1	4
Iron (Fe)	anti an ND an	0.2	40
Manganese (Mn)	ND THE WAY	0.1	1.8
Molybdenum (Mo)	ND	0.01	0.12
Nickel (Ni)	ND ND	0.01	0.14
Silver (Ag)	ND	0.01	0.08
Tin (Sn)	MILL MND MILL	0.1	100
Vanadium (V)	LAT UND STATE MAN	0.005	0.01
Zinc (Zn)	ND	0.1	5
Arsenic (As)	ND.	0.001	0.002
Barium (Ba)	ND ND	0.1	1.2
Beryllium (Be)	ND	0.005	0.01
Cadmium (Cd)	ND NITE	0.001	0.005
Lead (Pb)	ND ND	0.005	0.01
Lithium (Li)	ND IN IN	0.005	0.048
Mercury (Hg)	ND AND AND AND AND AND AND AND AND AND A	0.001	0.003
Thallium (TI)	ND	0.0001	0.0001
Magnesium (Mg)	TO NO WE W	0.1	it Tet Tet
Titanium (Ti)	ND	0.01	Mr. Mr. M

- 1. Test Method: With reference to BS EN 13130-1: 2004, analysis was performed by ICP-MS.
- 2. Test Condition and simulant: Sample(s) were migrated with 5g/L citric acid at 70°C for 2 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. "--" = Not regulated
- 7. The specification was quoted from Technical Guide on Metals and alloys used in food contact materials of Council of Europe Resolution CM/Res(2013)9.

Sample Photo:

Photo	graph of parts tested:	Mr. Mr. Mr.		
No.	Photo of testing part	Parts Description	Client Claimed Material	
WALTER WALTER	1-23-45 6-7 8 9 10 11 12 13 14 15 16 17 18	Gray plastic	Whitek wh	
MITEL PLITER JUNETER	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Black plastic	TIEK WILLEK	
itek 3 mitek	27. 5 On world no an 30 a may 25 a may 30 a may 35 a may	Transparent black plastic	RPET Whitek whitek whitek whitek Whitek whitek whitek whitek whitek whitek whitek whitek	
TEN WILLIAM A EMPLITY A EM	1-23-4 5 6 7 8 9 10 11 12 13 1415 16 17	Transparent silicone rubber	Silicone rubber	

No.	Photo of testing part	Parts Description	Client Claimed Material
MILES WALL	2	Silvery metal	Stainless steel
MALIE ON THE STREET	1 - 2 3 - 4 5 6 - 7 8 9 1 0 11 12 13 14 15 16 17 18	Translucent silicone rubber	Silicone rubber

Remarks:

- 1. The results shown in this test report refer only to the sample(s) tested;
- 2. This test report cannot be reproduced, except in full, without prior written permission of the company;
- 3. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver;
- 4. The Applicant name and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which Waltek hasn't verified;
- 5. If the report is not stamped with the accreditation recognized seal, it will only be used for scientific research, education, and internal quality control activities, and is not used for the purpose of issuing supporting data to the society.

===== End of Report =====

TEST REPORT

Reference	No	 WTF21F04041657F

Applicant: Mid Ocean Brands B.V.

Address: 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon,

Hong Kong

Manufacturer : 114276

Sample Name: Silicone ring in bottle/tumbler

Model No. : MO9225, MO9539, MO9597, MO9689, MO9939, MO9940

Test Requested.....: In accordance with French Décret n°2007-766 with amendments and

Regulation (EC) No 1935/2004.

Test Conclusion.....: Pass (Please refer to next pages for details)

Date of Receipt sample : 2021-04-29

Date of Test : 2021-04-29 to 2021-05-12

Date of Issue : 2021-05-12

Test Result: Please refer to next page (s)

Remarks:

The results shown in this test report refer only to the sample(s) tested; this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

If the report is not stamped with the accreditation recognized seal, it will only be used for scientific research, education, and internal quality control activities, and is not used for the purpose of issuing supporting data to the society.

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China

Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Compiled by: Approved by:

Abby Zhou / Project Engineer

Dino.Zhang / Technical Manager

Test Results:

1. Overall Migration Test

Reference No.: WTF21F04041657F

Food Circulant	Took Condition	Result (mg/kg)	100(mg/kg)	Limit (mag/kg)
Food Simulant	Test Condition	No.1	LOQ(mg/kg)	Limit (mg/kg)
3% Acetic Acid	70°C for 2 hours	ND	20	60
10% Ethanol	70°C for 2 hours	IT ND WELL	20	60

Note:

- 1. Test method: With reference to EN 1186-1: 2002 and EN 1186-3: 2002
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from Council of Europe Resolution AP(2004)5 and French Arrêté du 25 novembre 1992 for Silicone Elastomers.

2. Peroxide Value Test*

Test Item	Result	TE WALL WALL WALL WALL
	No.1	Limit Limit
Peroxide Value	Absent	Absent

Note:

- 1. Test method: With reference to European Pharmacopeia (2005) ANNEX X F, Clause 2.5.5, method A.
- 2. The specification was quoted from French Arrêté du 25 novembre 1992 for Silicone Elastomers.
- 3. Absent = Not detected
- 4. The testing item marked with '*' does not been accredited by CNAS.

3. Volatile Organic Compounds

Tool item	Result (%)	100 (%)	Limit (0/)
Test Item	No.1	LOQ (%)	Limit (%)
Volatile Organic compounds	- 15th 0.11 1 mill	0.05	0.5

Note:

- 1. Test method: With reference to French Arrêté du 25 novembre 1992 Annex III for silicone Elastomers.
- 2. "%" = percentage by weight
- 3. LOQ = Limit of quantitation
- 4. The specification was quoted from French Arrêté du 25 novembre 1992 for Silicone Elastomers.

CING VALUE

4. Specific Migration of Organotin (as Tin)*

Reference No.: WTF21F04041657F

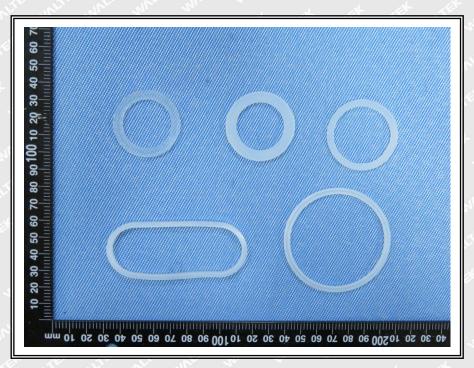
Test Item	Result (mg/kg) No.1	LOQ (mg/kg)	Limit (mg/kg)
Specific Migration of Organotin (as Tin)	port ND perfect of	0.01	0.1

Note:

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 70°C for 2 hours, analysis was performed by ICP-OES.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected, less than LOQ
- 5. The specification was quoted from French Arrêté du 25 novembre 1992 for Silicone Elastomers.
- 6. The testing item marked with '*' does not been accredited by CNAS.

5. Bisphenol A Content*

s	Toot from	Result (mg/kg)	100 (mg/kg)	Limit (mg/kg)
	Test Item	No.1	LOQ (mg/kg)	Limit (mg/kg)
<	Bisphenol A	ND	0.1	Not Detected (<0.1mg/kg)


- 1. Test Method: With reference to EPA3550C:2007, analysis was performed by GC-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from Law No 2012-1442.
- 6. The testing item marked with '*' does not been accredited by CNAS.

Sample Photo:

Photograph of parts tested:

No.	Photo of testing part	Parts Description	Client Claimed Material
10 20 30 40 50 60 70 80 90	0	Translucent silicone rubber	Silicone rubber

===== End of Report =====

