

TEST REPORT

Reference No	:-1	WTF22F05106844N
Applicant	: 3	Mid Ocean Brands B.V.
Address		7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong 109617
Manufacturer		109017
Address	÷	I say a series while while while while and the series of the
Product Name	: 5	LED alarm clock bamboo casing
Model No	•	MO9921, MO9922
Test specification	anir Anir	Photobiological safety of lamps and lamp systems EN 62471:2008 IEC 62471:2006 (First Edition)
Date of Receipt sample	d de se	2022-05-30
Date of Test	;	2022-05-30 to 2022-06-07
Date of Issue	:	2022-06-07
Test Report Form No	:	WPL-62471A-01A
Test Result	:	Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of approver.

Prepared By: Waltek Testing Group (Foshan) Co., Ltd. Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Tested by:

7m 24 Finn

Approved by

Akin Xu

Reference No.: WTF22F05106844N

Page 2 of 15

alt of the second	No all all and a second	dr _ dr _ d
Test item description	: LED alarm clock bamboo casing	
Trade Mark	: None	
General remarks:	the state state strate state and a state	mar and
"(See remark #)" refers to a rer	dditional information appended to the report. mark appended to the report. o a table appended to the report.	
	a (point) is used as the decimal separator.	

Remark:

- 1. Measurement was conducted at voltage 5VDC with USB and at a stable ambient temperature 25°C±5°C.
- 2. All models are similar except to model name and enclosure shape are different. Unless otherwise specified, all tests were performed on model MO9921 to represent the other similar models.
- 3. Detail information for models covered in this report as below:

	Item	Model	Ratings	ССТ	Driver	
		MO9921	5VDC	10 54 5	et and and and	
	3	MO9922	5VDC			
The All t	ests were ca	onducted under luminain rried out at model MO99		AND AND AND	AND AND AND	
Tes	t item partic	ulars	See below		St. 50 50	
Tes	ted lamp		: 🖂 continu	ous wave lamps	pulsed lamps	
Tes	ted lamp sys	tem	No lamp sy	/stem		
Lan	np classificati	on group	:exempt⊠	risk 1	risk 2 risk 3	
Lan	np cap					
Bulk	D					
Rate	ed of the lam	p	: See model	l list in page 2		
Furt	thermore mai	rking on the lamp	: None			
Sea	soning of lan	nps according IEC stand	lard None			
Use	d measurem	ent instrument	See page ?	13		
Ten	nperature by	measurement	25 ± 5 °C	∶25 ± 5 °C		
Info	rmation for s	afety use				
Pos	sible test ca	ase verdicts:	1 4 1	. A. 5	and the application of the	
-	test case doe	es not apply to the test o	bject N (Not app	licable)		
- test object does meet the requirement			nt: P (Pass)	: P (Pass)		
	test object de	pes not meet the require	ment : F (Fail)			

100

2

10	IEC/EN 62471	- A. A. 3	S. S
Clause	Requirement + Test	Result – Remark	Verdict
4	EXPOSURE LIMITS	and and all	Р
4.1	General	and and and	" ^р Р
strek whi	The exposure limits in this standard is not less than 0,01 ms and not more than any 8-hour period and should be used as guides in the control of exposure	and sound source	Р
et antro antro	Detailed spectral data of a light source are generally required only if the luminance of the source exceeds 10 ⁴ cd·m ⁻²	see clause 4.3	Р
4.3	Hazard exposure limits	Star Star St	Р
4.3.1	Actinic UV hazard exposure limit for the skin and eye	Ser an and	Р
hore all	The exposure limit for effective radiant exposure is 30 J·m ⁻² within any 8-hour period	NUTER MAUSE MAULT	P
	To protect against injury of the eye or skin from ultraviolet radiation exposure produced by a broadband source, the effective integrated spectral irradiance , E_s , of the light source shall not exceed the levels defined by:	and another and an	Р
unicet 3	$E_{\rm s} \cdot t = \sum_{200}^{400} \sum_{t} E_{\lambda}(\lambda, t) \cdot S_{\rm UV}(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 30 \qquad \qquad \text{J} \cdot \text{m}^{-2}$	and an and a second	P.
Miller und	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye or skin shall be computed by:	mart ward	P
inter somer	$t_{\max} = \frac{30}{E_s} \qquad s$	and and and a	Р
4.3.2	Near-UV hazard exposure limit for eye	* 5 ¹⁰	Р
unicet au	For the spectral region 315 nm to 400 nm (UV-A) the total radiant exposure to the eye shall not exceed 10000 J·m ⁻² for exposure times less than 1000 s. For exposure times greater than 1000 s (approximately 16 minutes) the UV-A irradiance for the unprotected eye, E _{UVA} , shall not exceed 10 W·m ⁻² .	and and and	P
et andres	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye for time less than 1000 s, shall be computed by:	the second second second	Р
White a	$t_{\max} \le \frac{10\ 000}{E_{\text{UVA}}} \qquad \text{s}$	and another series	P.+
4.3.3	Retinal blue light hazard exposure limit	See table 4.2	Р
nin an Set anus North	To protect against retinal photochemical injury from chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, $B(\lambda)$, i.e., the blue-light weighted radiance , L _B , shall not exceed the levels defined by:	and and and and	P
- Share	$L_{\rm B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^6 \qquad \rm J \cdot m^{-2} \cdot sr^{-1}$	for t $\leq t_{\text{max}} = \frac{10^6}{L_B}$	Р

19	IEC/EN 62471				
Clause	Requirement + Test	Result – Remark	Verdict		
and the as	$L_{\rm B} = \sum_{300}^{700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 100 \qquad \qquad {\rm W} \cdot {\rm m}^{-2} \cdot {\rm sr}^{-1}$	and when and	Р		
4.3.4	Retinal blue light hazard exposure limit - small source	m. m. a.	N		
لیمانی مستحک ایک ملک	Thus the spectral irradiance at the eye E_{λ} , weighted against the blue-light hazard function $B(\lambda)$ shall not exceed the levels defined by:	and and another	N		
and the second s	$E_{B} \cdot t = \sum_{300}^{700} \sum_{t} E_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 \qquad J \cdot m^{-2}$	where where we	N		
and and a second	$E_{\rm B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1 \qquad W \cdot m^{-2}$	and and and	N		
4.3.5	Retinal thermal hazard exposure limit	where show show	Р		
ret sour	To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_{λ} , weighted by the burn hazard weighting function $R(_{\lambda})$ (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by:	and and a second	P		
	$L_{\rm R} = \sum_{380}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50000}{\alpha \cdot t^{0,25}} \qquad \rm W \cdot m^{-2} \cdot sr^{-1}$	(10 µs ≤ t ≤ 10 s)	P		
4.3.6	Retinal thermal hazard exposure limit - weak visual stimulus	1.5 8	_́Р		
ret survich	For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L _{IR} , as viewed by the eye for exposure times greater than 10 s shall be limited to:	and and another	P		
where a	$L_{\rm IR} = \sum_{780}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad W \cdot m^{-2} \cdot {\rm sr}^{-1}$	1997 - 1998 - 1999 1997 - 1997 - 1997	Р		
4.3.7	Infrared radiation hazard exposure limits for the eye	me an an	Р		
er ynered ynered	The avoid thermal injury of the cornea and possible delayed effects upon the lens of the eye (cataractogenesis), ocular exposure to infrared radiation, E_{IR} , over the wavelength range 780 nm to 3000 nm, for times less than 1000 s, shall not exceed:	And Antice Martine	P		
SUNCTED N	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 18000 \cdot t^{-0,75} \qquad \rm W \cdot m^{-2}$	amont white and	Р		
Ne 27	For times greater than 1000 s the limit becomes:	ster mile mile	P S		
ret and	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 100 \qquad \rm W \cdot m^{-2}$	and and and and	Р		
4.3.8	Thermal hazard exposure limit for the skin	+ ,+ ,+ ,+ ,	с Р		
	Visible and infrared radiant exposure (380 nm to 3000 nm) of the skin shall be limited to:	They are the	Р		

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

34	IEC/EN 62471				
Clause	Requirement + Test	Result – Remark	Verdict		
and the state	$E_{H} \cdot t = \sum_{380}^{3000} \sum_{t} E_{\lambda}(\lambda, t) \cdot \Delta t \cdot \Delta \lambda \le 20000 \cdot t^{0,25} \qquad J \cdot m^{-2}$	and the set	P		
5	MEASUREMENT OF LAMPS AND LAMP SYSTEMS	m. m. m.	Р		
5.1	Measurement conditions	Stef with white	P		
et anore	Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification.	at any set and a	P		
5.1.1	Lamp ageing (seasoning)	15 15 1	N		
en e	Seasoning of lamps shall be done as stated in the appropriate IEC lamp standard.	and and and	N		
5.1.2	Test environment	where she's she	P		
and which	For specific test conditions, see the appropriate IEC lamp standard or in absence of such standards, the appropriate national standards or manufacturer's recommendations.	The second second	P Street		
5.1.3	Extraneous radiation	+ 50 50 s	ं P		
Survey 1	Careful checks should be made to ensure that extraneous sources of radiation and reflections do not add significantly to the measurement results.	where and a series	P		
5.1.4	Lamp operation	1. 1. 18	P		
n	Operation of the test lamp shall be provided in accordance with:	and and	Р		
SALL SALLS	 the appropriate IEC lamp standard, or 	and and a state of	N		
L A	 the manufacturer's recommendation 		P0		
5.1.5	Lamp system operation	and the states and	.√P		
WITTER ON	The power source for operation of the test lamp shall be provided in accordance with:	what what what	* P'		
de la	 the appropriate IEC standard, or 		Р		
in and	- the manufacturer's recommendation	The marker and the	P		
5.2	Measurement procedure	and the	P .		
5.2.1	Irradiance measurements	and share a	P		
L.	Minimum aperture diameter 7mm.	to the s	∂ P		
30° 3	Maximum aperture diameter 50 mm.	and and and	Р		
put the wi	The measurement shall be made in that position of the beam giving the maximum reading.	and suret sources	S S P		
15 1	The measurement instrument is adequate calibrated.	a de de	P		
5.2.2	Radiance measurements	and white white	Р		
5.2.2.1	Standard method	. A A	_<⊢ P_<		
	The measurements made with an optical system.	when which all	Р		

Clause	Requirement + Test	Result – Remark	Verdic
Clause	Requirement + Test	Result – Remark	verdic
unificat al	The instrument shall be calibrated to read in absolute radiant power per unit receiving area and per unit solid angle to acceptance averaged over the field of view of the instrument.	and and and and	P.
5.2.2.2	Alternative method	1 0 0	P
er an	Alternatively to an imaging radiance set-up, an irradiance measurement set-up with a circular field stop placed at the source can be used to perform radiance measurements.	at som word	Р
5.2.3	Measurement of source size	the dot of	Р
and a set	The determination of α , the angle subtended by a source, requires the determination of the 50% emission points of the source.	and and and	Р
5.2.4	Pulse width measurement for pulsed sources	with they we	N
STER WAL	The determination of Δt , the nominal pulse duration of a source, requires the determination of the time during which the emission is > 50% of its peak value.	and another another	N
5.3	Analysis methods	5 50 50 s	P
5.3.1	Weighting curve interpolations	an an a	Р
and a	To standardize interpolated values, use linear interpolation on the log of given values to obtain intermediate points at the wavelength intervals desired.	see table 4.1	P
5.3.2	Calculations	Santa and	S P [∞]
Test MALLY	The calculation of source hazard values shall be performed by weighting the spectral scan by the appropriate function and calculating the total weighted energy.	and another	Р
5.3.3	Measurement uncertainty	and and and	Р
5	The quality of all measurement results must be quantified by an analysis of the uncertainty.	at at at	P
6	LAMP CLASSIFICATION	me an in	Р
Ster shall	For the purposes of this standard it was decided that the values shall be reported as follows:	see table 6.1	P
et ynstred ynstred	 for lamps intended for general lighting service, the hazard values shall be reported as either irradiance or radiance values at a distance which produces an illuminance of 500 lux, but not at a distance less than 200 mm 	A ANTICK ANTICK AN	N
maret an	 for all other light sources, including pulsed lamp sources, the hazard values shall be reported at a distance of 200 mm 	aret and search	P
6.1	Continuous wave lamps	at set set	P
6.1.1	Exempt Group	The and a	Р
white .	In the exempt group is lamp, which does not pose any photobiological hazard. The requirement is met by any lamp that does not pose:	white white w	Р

Clause	Poquiromont L Tost	Result – Remark	Verdic
Clause	Requirement + Test	Result – Remark	verdic
5th	 an actinic ultraviolet hazard (E_s) within 8-hours exposure (30000 s), nor 	10 50 5	P
n ar La s	 a near-UV hazard (E_{UVA}) within 1000 s, (about 16 min), nor 	an an an	Р
er solo St. St.	- a retinal blue-light hazard (L _B) within 10000 s (about 2,8 h), nor	and show show	Р
ane	- a retinal thermal hazard (L _R) within 10 s, nor	and when when y	Р
Murek	– an infrared radiation hazard for the eye (E_{IR}) within 1000 s	when and and	P
preset at	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 1000 s are in Risk Exempt Group	NIST AND AND	P
6.1.2	Risk Group 1 (Low-Risk)	at at let	N
4 . D	In this group is lamp, which exceeds the limits for the exempt group but that does not pose:	while where i	N
mar	– an actinic ultraviolet hazard (E_s) within 10000 s, nor	and and and an	Ň
de la	- a near ultraviolet hazard (EUVA) within 300 s, nor	1 15 1	N
m 1	- a retinal blue-light hazard (L _B) within 100 s, nor	when all all	N
de s	– a retinal thermal hazard (L_R) within 10 s, nor	1 5 5	N
he an	– an infrared radiation hazard for the eye (E_{IR}) within 100 s	Same an	N
ret wait	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 100 s are in Risk Group 1.	south souther a	N
6.1.3	Risk Group 2 (Moderate-Risk)	Mr. The south and	Ň
STATES N	This requirement is met by any lamp that exceeds the limits for Risk Group 1, but that does not pose:	50 50 55	N
S ^{ar} - S	 an actinic ultraviolet hazard (E_s) within 1000 s exposure, nor 	at all a	N
	 a near ultraviolet hazard (E_{UVA}) within 100 s, nor 	an aller aller	N
er Vintre	- a retinal blue-light hazard (L_B) within 0,25 s (aversion response), nor	a surviver survey al	N
WALLAND .	 a retinal thermal hazard (L_R) within 0,25 s (aversion response), nor 	minet minet and	N
dr.	– an infrared radiation hazard for the eye (E_{IR}) within 10 s	a de de	N
100 - 20 500 - 25	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 10 s are in Risk Group 2.	and the set	N
6.1.4	Risk Group 3 (High-Risk)	The star of	N
white	Lamps which exceed the limits for Risk Group 2 are in Group 3.	white white w	N
6.2	Pulsed lamps	a de a	N

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

Reference No.: WTF22F05106844N

and the	IEC/EN 62471				
Clause	Requirement + Test	Result – Remark	Verdict		
	Pulse lamp criteria shall apply to a single pulse and to any group of pulses within 0,25 s.	and and an	N		
an an	A pulsed lamp shall be evaluated at the highest nominal energy loading as specified by the manufacturer.	an an an	N		
10 AC	The risk group determination of the lamp being tested shall be made as follows:	Part when whe	N		
and a	 a lamp that exceeds the exposure limit shall be classified as belonging to Risk Group 3 (High-Risk) 	and and and a	N		
Super-	 for single pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group 	white white wh	N		
الله المحملين كنامين المركب المحملين	 for repetitively pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the pulsed emission 	and and and	N		

	0		
	A		. 6
3		V.	
			÷

	elength [,] , nm	UV hazard function S _{υν} (λ)	Wavelength λ, nm	UV hazard function S _{υν} (λ)
1 2	200	0,030	313*	0,006
×	205	0,051	315	0,003
1 2	210	0,075	316	0,0024
2	215	0,095	317	0,0020
1	220	0,120	318	0,0016
2	225	0,150	319	0,0012
3	230	0,190	320	0,0010
2	235	0,240	322	0,00067
1 ji	240	0,300	323	0,00054
2	245	0,360	325	0,00050
512	250	0,430	328	0,00044
2	254*	0,500	330	0,00041
	255	0,520	333*	0,00037
2	260 🧳	0,650	335	0,00034
S 2	265	0,810	340	0,00028
1 2	270	1,000	345	0,00024
2	275	0,960	350	0,00020
2	280*	0,880	355	0,00016
- 2	285	0,770	360	0,00013
3 2	290	0,640	365*	0,00011
2	295	0,540	370	0,000093
2	297*	0,460	375	0,000077
3	300	0,300	380	0,000064
3	803*	0,120	385	0,000053
3	305	0,060	390	0,000044
	308	0,026	395	0,000036
3	310	0,015	400	0,000030

¹ Wavelengths chosen are representative: other values should be obtained by logarithmic interpolation at intermediate wavelengths.

* Emission lines of a mercury discharge spectrum.

Ch I

) E

able 4.2	sources	functions for assessing retinal hazards fr	om broadband optical P	
Wavelength nm		Blue-light hazard function B (λ)	Burn hazard function R (λ)	
	300	0,01	1 1 5 5	
$u_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_$	305	0,01	the the star way	
24	310	0,01		
9 . S	315	0,01	1 1 5 5	
1	320	0,01	en all all and	
6 <i>5</i>	325	0,01	and the state	
Sec.	330	0,01	the set with set at	
	335	0,01	40	
5	340	0,01	1 1 1 S 5	
$s_{l_{n-2}}$	345	0,01	the strength and	
- Ale	350	0,01	the second second	
55	355	0,01	18 5° 5° 50	
	360	0,01	and the second	
1 1	365	0,01	1 A A A	
. Star	370	0,01	a the star and	
	375	0,01		
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	380	0,01	0,1	
de 1	385	0,013	0,13	
	390	0,025	0,25	
J. 22	395	0,05	0,5	
4. A.	400	0,10	1,0	
1 1	405	0,20	2,0	
	410	0,40	4,0	
	415	0,80	8,0	
5 50	420	0,90	9,0	
38	425	0,95	9,5	
and a	430	0,98	9,8	
	435	1,00	10,0	
-9. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	440	1,00	10,0	
di la	445	0,97	9,7	
N. A.	450	0,94	9,4	
	455	0,90	9,0	
6 S	460	0,80	8,0	
30	465	0,70	7,0	
1	470	0,62	6,2	
	475	0,55	5,5	
	480	0,45	4,5	
1	485	0,40	4,0	
10 - A	490	0,22	2,2	
	495	0,16 10 ^[(450-λ)/50]	1,6	
6	500-600		1,0	
-34	600-700	0,001	<u>1,0</u> 10 ^[(700-λ)/500]	
8 18	700-1050	1 1 1 1 1 1 1 1 1	0,2	
	1050-1150		0,2 0,2.10 ^{0,02(1150-λ)}	
	1150-1200 1200-1400		0,2.100,02(1130 Å)	

R.

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

Reference No.: WTF22F05106844N

	-	\mathbf{V}	7
1	1		۲
		9	

Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Limiting aperture rad (deg)	EL in terms of constant irradiance W•m ⁻²		
Actinic UV skin & eye	$E_{S} = \sum E_{\lambda} \bullet S(\lambda) \bullet \Delta \lambda$	200 - 400	< 30000	1,4 (80)	30/t		
Eye UV-A	$E_{UVA} = \sum E_{\lambda} \bullet \Delta \lambda$	315 – 400	≤1000 >1000	1,4 (80)	10000/t 10		
Blue-light small source	$E_B = \sum E_\lambda \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	≤100 >100	< 0,011	100/t 1,0		
Eye IR	$E_{IR} = \sum E_{\lambda} \bullet \Delta \lambda$	780 –3000	≤1000 >1000	1,4 (80)	18000/t ^{0,75} 100		
Skin thermal	$E_{H} = \sum E_{\lambda} \bullet \Delta \lambda$	380 - 3000	< 10	2π sr	20000/t ^{0,75}		

Table 5.5 Su	mmary of the ELs for th	e retina (radian	ce based valu	ies)	P
Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Field of view radians	EL in terms of constant radiance W•m ⁻² •sr ⁻¹)
Blue light	$L_{B} = \sum L_{\lambda} \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	0,25 - 10 10-100 100-10000 ≥ 10000	0,011•√(t/10) 0,011 0,0011•√t 0,1	10 ⁶ /t 10 ⁶ /t 10 ⁶ /t 100
Retinal thermal	$L_{R} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	380 – 1400	< 0,25 0,25 – 10	0,0017 0,011∙√(t/10)	50000/(α•t ^{0,25}) 50000/(α•t ^{0,25})
Retinal thermal (weak visual stimulus)	$L_{IR} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	780 – 1400	> 10	0,011	6000/α

111

Risk Spectrum	Action		Units	Emission Measurement						
	spectr	Symbol		Exe	empt	Low risk		Mo	od risk	
	um	-		Limit	Result	Limit	Result	Limit	Resul	
Actinic UV	S _{UV} (λ)	Es	W∙m⁻²	0,001	1.222e-8	0,003	35	0,03		
Near UV		EUVA	W∙m⁻²	0.33	4.571e-5	33		100		
Blue light	Β(λ)	L _B	W∙m⁻ ²∙sr⁻¹	100	1.535e-1	10000	35 	400000	00	
Blue light, small source	Β(λ)	Ев	W∙m⁻²	0.01	arter ander or	1,0	500	400	an and	
Retinal thermal	R(λ)	L _R	W∙m⁻ ²∙sr⁻¹	28000/α	1.398e1	28000/α	- 	71000/	α	
Retinal thermal, weak visual	R(λ)	Lir	W•m ⁻ ²•sr ⁻¹	545000 0.0017 ≤α≤ 0.011				NCTER WAS		
stimulus	Test ways		-•51	6000/α 0.011 ≤α≤ 0.1	1.062e-1					
IR radiation , eye	Ŵ	E _{IR}	W•m⁻²	100	9.700e-4 570 3200				91 ⁵¹⁰⁴ 91	
		d as one with of non-GLS s		adian. Avera	ging field of vie	ew at 10000 s	is 0.1 radi	an.	The Burn	
1.0						LB RF (mrac 100(Exe	1) (W/	asured m2/sr) (Limit W/m2/sr)	
0.8-						Risk Gro	. 15	35e-1	1.000e2	
0.0-						11(Ris Group	1)	52e0	1.000e4	
비 0.6-				1.7(Risk Group 2) 1.450e0 4.000				4.000e6		
wn 0.6- bectrum S 0.4-						LR RF (mrac	OV Mea	asured m2/sr) (Limit W/m2/sr)	
0.2-				11/Exempt			2.800e5			
									2.800e5	
0.0						1.7(Ri	-		1	

Attachment 1: Equipment List

Equipment	Model/Type	Cal. Due. Date 2023-01-11		
Biosafety ultraviolet light leaking spectrum analysis system	EVERFINE PMS-700			
Precise digital display dc current stabilized voltage supply	EVERFINE WY305-V1	2023-01-11		
High standards of stable ultraviolet radiation power	EVERFINE UVS-8005	2023-01-11		
Ultraviolet radiation standard lamp	EVERFINE SIS-631	2023-01-11		
D204BH ray radiation intensity standard lamp	EVERFINE D204BH-3200K	2023-01-11		
AC power source	ACPOWER AFC-110104F	2023-01-11		
Temperature & Humidity Datalogger	Testo 608-H1	2023-01-11		

Attachment 2: Photo document

Model: MO9921

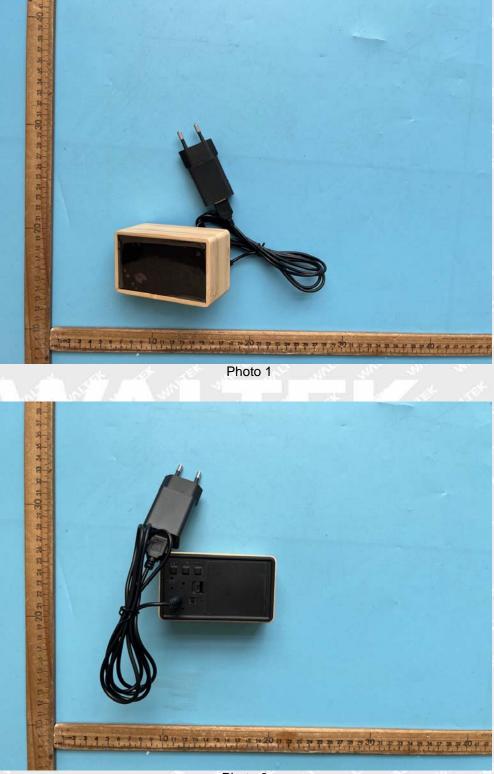


Photo 2

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

NOLTA

1

Page 15 of 15

Model: MO9922

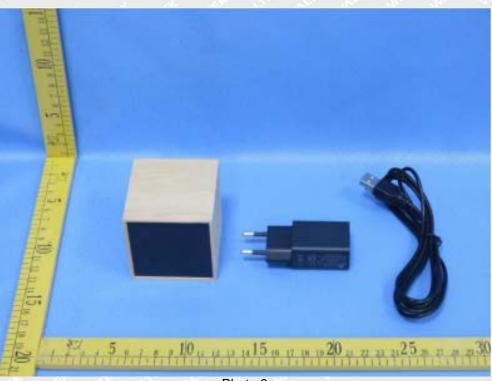


Photo 3

===== End of Report ======

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn